ANNA UNIVERSITY, CHENNAI

AFFILIATED INSTITUTIONS

B.E. MECHANICAL ENGINEERING

REGULATIONS – 2017

CHOICE BASED CREDIT SYSTEM

PROGRAMME EDUCATIONAL OBJECTIVES:

Bachelor of Mechanical Engineering curriculum is designed to impart Knowledge, Skill and Attitude on the graduates to

- 1. Have a successful career in Mechanical Engineering and allied industries.
- 2. Have expertise in the areas of Design, Thermal, Materials and Manufacturing.
- 3. Contribute towards technological development through academic research and industrial practices.
- 4. Practice their profession with good communication, leadership, ethics and social responsibility.
- 5. Graduates will adapt to evolving technologies through life-long learning.

PROGRAMME OUTCOMES

- 1. An ability to apply knowledge of mathematics and engineering sciences to develop mathematical models for industrial problems.
- 2. An ability to identify, formulates, and solve complex engineering problems. with high degree of competence.
- 3. An ability to design and conduct experiments, as well as to analyze and interpret data obtained through those experiments.
- 4. An ability to design mechanical systems, component, or a process to meet desired needs within the realistic constraints such as environmental, social, political and economic sustainability.
- 5. An ability to use modern tools, software and equipment to analyze multidisciplinary problems.
- 6. An ability to demonstrate on professional and ethical responsibilities.
- 7. An ability to communicate, write reports and express research findings in a scientific community.
- 8. An ability to adapt quickly to the global changes and contemporary practices.
- 9. An ability to engage in life-long learning.

o, i o inapping					r				n
Programme Educational Objectives	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9
Ι	\checkmark	\checkmark	~	~	~	~	~	~	~
II	\checkmark	✓	~		~			~	
III		~		✓	~	~		~	
IV					~	~	~		✓
V		~	~	✓	~				~

PEO / PO Mapping

		COURSE TITLE	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9
		Communicative English							\checkmark		
		Engineering Mathematics I	√	✓	✓						\checkmark
		Engineering Physics	✓	✓	√						✓
	11	Engineering Chemistry				✓					
	Ĕ	Problem Solving and Python Programming					✓				
	0)	Engineering Graphics		✓	✓				√		
		Problem Solving and Python Programming Laboratory			✓		✓				
		Physics and Chemistry Laboratory			✓						
~		COURSE TITLE	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9
Ř		Technical English							\checkmark		
ĒA		Engineering Mathematics II	\checkmark	✓	\checkmark				\checkmark		\checkmark
\succ		Materials Science				✓				✓	
	М 2	Basic Electrical, Electronics and Instrumentation Engineering				<				<	
	SE	Environmental Science and Engineering				✓					
	•,	Engineering Mechanics	✓	✓					√	✓	✓
		Engineering Practices Laboratory			✓						
		Basic Electrical, Electronics and Instrumentation Engineering			✓						
		COURSE TITLE	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
		Transforms and Partial Differential Equations	✓	✓	\checkmark					✓	\checkmark
		Engineering Thermodynamics	✓	✓	\checkmark				\checkmark	✓	
		Fluid Mechanics and Machinery	✓	✓	\checkmark						
	ი	Manufacturing Technology - I			\checkmark	✓	\checkmark	✓		✓	\checkmark
	Σ	Electrical Drives and Controls									
	S	Manufacturing Technology Laboratory - I			✓	✓	✓	 ✓ 		✓	✓
0		Computer Aided Machine Drawing			✓	✓	✓	✓		✓	✓
R K		Electrical Engineering Laboratory			✓						
A U		Interpersonal Skills / Listening & Speaking			✓ 						
⋝		COURSE TITLE	P01	PO2	PO3	P04	PO5	P06	P07	P08	PO9
	4	Statistics and Numerical Methods	✓	 ✓ 							
	Σ	Kinematics of Machinery	✓	✓	√		 ✓ 				
	SE	Manufacturing Technology– II	✓		\checkmark	✓	\checkmark			✓	\checkmark
		Engineering Metallurgy							~		

		Strength of Materials for Mechanical Engineers	✓	√	\checkmark	√					
		Thermal Engineering- I	✓	✓			✓				
		Manufacturing Technology Laboratory–II			\checkmark						
		Strength of Materials and Fluid Mechanics Machinery Laboratory			\checkmark						Ì
		Advanced Reading and Writing						✓			✓
		COURSE TITLE	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
		Thermal Engineering- II	✓	✓			✓			 ✓ 	
		Design of Machine Elements		✓		√			✓	\checkmark	\checkmark
	S	Metrology and Measurements	\checkmark		\checkmark	✓			✓	✓	
	Σ	Dynamics of Machines	~	✓	✓		✓		✓		✓
	SI	Kinematics and Dynamics Laboratory	\checkmark	✓	\checkmark	✓					
		Thermal Engineering Laboratory	\checkmark	✓	\checkmark						
3		Metrology and Measurements Laboratory	✓	✓	√	✓			✓		
R		COURSE TITLE	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9
EA		Design of Transmission Systems		✓		✓			✓		✓
- ≻		Computer Aided Design and Manufacturing		✓	\checkmark		\checkmark				
		Heat and Mass Transfer	\checkmark	\checkmark	\checkmark	✓				\checkmark	\checkmark
	м М	Finite Element Analysis	✓	✓		✓					\checkmark
	Ш	Hydraulics and Pneumatics	✓	✓		✓				\checkmark	
	0)	C.A.D. / C.A.M. Laboratory		✓	\checkmark			✓			
		Design and Fabrication Project						✓	✓		\checkmark
		Professional Communication				✓	✓	✓	✓	ĺ	✓
		COURSE TITLE	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
		Power Plant Engineering	✓	√	√	√				\checkmark	
		Mechatronics	✓	√	\checkmark		\checkmark			\checkmark	\checkmark
	17	Process Planning and Cost Estimation		\checkmark		✓					
4	≥ Ш	Simulation and Analysis Laboratory	✓				✓		✓		
AR AR	S	Mechatronics Laboratory	✓	✓	√		✓			\checkmark	✓
Ē		Technical Seminar						✓			
	ω	Project Work	√	✓	✓			✓	✓		
	SEM	Principles of Management						~			~

ANNA UNIVERSITY, CHENNAI **AFFILIATED INSTITUTIONS B.E. MECHANICAL ENGINEERING REGULATIONS - 2017** CHOICE BASED CREDIT SYSTEM I TO VIII SEMESTERS CURRICULA AND SYLLABI

	SEMESTER I												
SL. NO	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Ρ	С					
THE	THEORY												
1.	HS8151	Communicative English	HS	4	4	0	0	4					
2.	MA8151	Engineering Mathematics - I	BS	4	4	0	0	4					
3.	PH8151	Engineering Physics	BS	3	3	0	0	3					
4.	CY8151	Engineering Chemistry	BS	3	3	0	0	3					
5.	GE8151	Problem Solving and Python Programming	ES	3	3	0	0	3					
6.	GE8152	Engineering Graphics	ES	6	2	0	4	4					
PRA	CTICALS		-										
7.	GE8161	Problem Solving and Python Programming Laboratory	ES	4	0	0	4	2					
8.	BS8161	Physics and Chemistry Laboratory	BS	4	0	0	4	2					
			TOTAL	31	19	0	12	25					

OFMEOTED I

SEMESTER II

SL. NO	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Ρ	С
THEC	DRY							
1.	HS8251	Technical English	HS	4	4	0	0	4
2.	MA8251	Engineering Mathematics - II	BS	4	4	0	0	4
3.	PH8251	Materials Science	BS	3	З	0	0	3
4.	BE8253	Basic Electrical, Electronics and Instrumentation Engineering	ES	3	3	0	0	3
5.	GE8291	Environmental Science and Engineering	HS	3	3	0	0	3
6.	GE8292	Engineering Mechanics	ES	5	З	2	0	4
PRA	CTICALS							
7.	GE8261	Engineering Practices Laboratory	ES	4	0	0	4	2
8.	BE8261	Basic Electrical, Electronics and Instrumentation Engineering Laboratory	ES	4	0	0	4	2
			TOTAL	30	20	2	8	25

SEMESTER III

SL. NO.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Ρ	С
THE	ORY							
1.	MA8353	Transforms and Partial Differential Equations	BS	4	4	0	0	4
2.	ME8391	Engineering Thermodynamics	PC	5	3	2	0	4
3.	CE8394	Fluid Mechanics and Machinery	ES	4	4	0	0	4
4.	ME8351	Manufacturing Technology - I	PC	3	3	0	0	3
5.	EE8353	Electrical Drives and Controls	ES	3	3	0	0	3
PRA	CTICAL							
6.	ME8361	Manufacturing Technology Laboratory - I	PC	4	0	0	4	2
7.	ME8381	Computer Aided Machine Drawing	PC	4	0	0	4	2
8.	EE8361	Electrical Engineering Laboratory	ES	4	0	0	4	2
9.	HS8381	Interpersonal Skills / Listening & Speaking	EEC	2	0	0	2	1
			TOTAL	33	17	2	14	25

SEMESTER IV

SL. NO.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Ρ	С
THE	ORY							
1.	MA8452	Statistics and Numerical Methods	BS	4	4	0	0	4
2.	ME8492	Kinematics of Machinery	PC	3	3	0	0	3
3.	ME8451	Manufacturing Technology – II	PC	3	3	0	0	3
4.	ME8491	Engineering Metallurgy	PC	3	3	0	0	3
5.	CE8395	Strength of Materials for Mechanical Engineers	ES	3	3	0	0	3
6.	ME8493	Thermal Engineering- I	PC	3	3	0	0	3
PRA	CTICAL							
7.	ME8462	Manufacturing Technology Laboratory – II	PC	4	0	0	4	2
8.	CE8381	Strength of Materials and Fluid Mechanics and Machinery Laboratory	ES	4	0	0	4	2
9.	HS8461	Advanced Reading and Writing	EEC	2	0	0	2	1
			TOTAL	29	19	0	10	24

SEMESTER V

SL. NO.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Ρ	С
THE	ORY							
1.	ME8595	Thermal Engineering- II	PC	3	3	0	0	3
2.	ME8593	Design of Machine Elements	PC	3	3	0	0	3
3.	ME8501	Metrology and Measurements	PC	3	3	0	0	3
4.	ME8594	Dynamics of Machines	PC	4	4	0	0	4
5.		Open Elective I	OE	3	3	0	0	3
PRA	CTICAL							
6.	ME8511	Kinematics and Dynamics Laboratory	PC	4	0	0	4	2
7.	ME8512	Thermal Engineering Laboratory	PC	4	0	0	4	2
8.	ME8513	Metrology and Measurements Laboratory	PC	4	0	0	4	2
			TOTAL	28	16	0	12	22

SEMESTER VI

SL. NO.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Р	С
THE	ORY							
1.	ME8651	Design of Transmission Systems	PC	3	3	0	0	3
2.	ME8691	Computer Aided Design and Manufacturing	PC	3	3	0	0	3
3.	ME8693	Heat and Mass Transfer	PC	5	3	2	0	4
4.	ME8692	Finite Element Analysis	PC	3	3	0	0	3
5.	ME8694	Hydraulics and Pneumatics	PC	3	3	0	0	3
6.		Professional Elective - I	PE	3	3	0	0	3
PRA	CTICAL							
7.	ME8681	CAD / CAM Laboratory	PC	4	0	0	4	2
8.	ME8682	Design and Fabrication Project	EEC	4	0	0	4	2
9.	HS8581	Professional Communication	EEC	2	0	0	2	1
			TOTAL	30	18	2	10	24

SEMESTER VII

SL. NO.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Ρ	С
THE	ORY							
1.	ME8792	Power Plant Engineering	PC	3	3	0	0	3
2.	ME8793	Process Planning and Cost Estimation	PC	3	3	0	0	3
3.	ME8791	Mechatronics	PC	3	3	0	0	3
4.		Open Elective - II	OE	3	3	0	0	3
5.		Professional Elective – II	PE	3	3	0	0	3
6.		Professional Elective – III	PE	3	3	0	0	3
PRA	CTICAL							
7.	ME8711	Simulation and Analysis Laboratory	PC	4	0	0	4	2
8.	ME8781	Mechatronics Laboratory	PC	4	0	0	4	2
9.	ME8712	Technical Seminar	EEC	2	0	0	2	1
			TOTAL	28	18	0	10	23

	SEMESTER VIII												
SL. NO.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С					
THEC	ORY												
1.	MG8591	Principles of Management	HS	3	3	0	0	3					
2.		Professional Elective- IV	PE	3	3	0	0	3					
PRAG	CTICAL	·			-								
3.	ME8811	Project Work	EEC	20	0	0	20	10					
			TOTAL	29	9	0	20	16					

TOTAL NUMBER OF CREDITS TO BE EARNED FOR AWARD OF THE DEGREE = 184

HUMANITIES AND SOCIAL SCIENCES (HS)

SL. NO.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Ρ	С
1.	HS8151	Communicative English	HS	4	4	0	0	4
2.	HS8251	Technical English	HS	4	4	0	0	4
3.	GE8291	Environmental Science and Engineering	HS	3	3	0	0	3
4.	MG8591	Principles of Management	HS	3	3	0	0	3

BASIC SCIENCE (BS)

SL. NO.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Ρ	С
1.	MA8151	Engineering Mathematics - I	BS	5	3	2	0	4
2.	PH8151	Engineering Physics	BS	3	3	0	0	3
3.	CY8151	Engineering Chemistry	BS	3	3	0	0	3
4.	BS8161	Physics and Chemistry Laboratory	BS	4	0	0	4	2
5.	MA8251	Engineering Mathematics II	BS	4	4	0	0	4
6.	PH8251	Materials Science	BS	3	3	0	0	3
7.	MA8353	Transforms and Partial Differential Equations	BS	4	4	0	0	4
8.	MA8452	Statistics and Numerical Methods	BS	4	4	0	0	4

ENGINEERING SCIENCES (ES)

SL. NO.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Ρ	С
1.	GE8151	Problem Solving and Python Programming	ES	3	3	0	0	3
2.	GE8152	Engineering Graphics	ES	6	2	0	4	4
3.	GE8161	Problem Solving and Python Programming Laboratory	ES	4	0	0	4	2
4.	BE8253	Basic Electrical, Electronics and Instrumentation Engineering	ES	3	3	0	0	3
5.	GE8292	Engineering Mechanics	ES	5	3	2	0	4
6.	GE8261	Engineering Practices Laboratory	ES	4	0	0	4	2
7.	BE8261	Basic Electrical, Electronics and Instrumentation Engineering Laboratory	ES	4	0	0	4	2
8.	CE8394	Fluid Mechanics and Machinery	ES	5	3	2	0	4
9.	EE8353	Electrical Drives and Controls	ES	3	3	0	0	3
10.	EE8361	Electrical Engineering Laboratory	ES	4	0	0	4	2
11.	CE8395	Strength of Materials for Mechanical Engineers	ES	3	3	0	0	3
12.	CE8381	Strength of Materials and Fluid Mechanics and Machinery Laboratory	ES	4	0	0	4	2

PROFESSIONAL CORE (PC)

SL. NO.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Ρ	С
1.	ME8391	Engineering Thermodynamics	PC	5	3	2	0	4
2.	ME8351	Manufacturing Technology - I	PC	3	3	0	0	3
3.	ME8361	Manufacturing Technology Laboratory - I	PC	4	0	0	4	2
4.	ME8381	Computer Aided Machine Drawing	PC	4	0	0	4	2
5.	ME8492	Kinematics of Machinery	PC	3	3	0	0	3
6.	ME8451	Manufacturing Technology- II	PC	3	3	0	0	3
7.	ME8491	Engineering Metallurgy	PC	3	3	0	0	3
8.	ME8493	Thermal Engineering- I	PC	3	3	0	0	3
9.	ME8462	Manufacturing Technology Laboratory-II	PC	4	0	0	4	2
10.	ME8595	Thermal Engineering- II	PC	3	3	0	0	3
11.	ME8593	Design of Machine Elements	PC	3	3	0	0	3
12.	ME8501	Metrology and Measurements	PC	3	3	0	0	3
13.	ME8594	Dynamics of Machines	PC	4	4	0	0	4
14.	ME8511	Kinematics and Dynamics Laboratory	PC	4	0	0	4	2
15.	ME8512	Thermal Engineering Laboratory	PC	4	0	0	4	2
16.	ME8513	Metrology and Measurements Laboratory	PC	4	0	0	4	2
17.	ME8651	Design of Transmission Systems	PC	3	3	0	0	3
18.	ME8691	Computer Aided Design and Manufacturing	PC	3	3	0	0	3
19.	ME8693	Heat and Mass Transfer	PC	5	3	2	0	4
20.	ME8692	Finite Element Analysis	PC	3	3	0	0	3
21.	ME8694	Hydraulics and Pneumatics	PC	3	3	0	0	3
22.	ME8681	C.A.D. / C.A.M. Laboratory	PC	4	0	0	4	2
23.	ME8682	Design and Fabrication Project	PC	4	0	0	4	2
24.	ME8792	Power Plant Engineering	PC	3	3	0	0	3
25.	ME8791	Mechatronics	PC	3	3	0	0	3
26.	ME8793	Process Planning and Cost Estimation	PC	3	3	0	0	3
27.	ME8711	Simulation and Analysis Laboratory	PC	4	0	0	4	2
28.	ME8781	Mechatronics Laboratory	PC	4	0	0	4	2

PROFESSIONAL ELECTIVES FOR B.E. MECHANICAL ENGINEERING

SEMESTER VI, ELECTIVE I

SL. NO.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Ρ	С
1.	ME8091	Automobile Engineering	PE	3	3	0	0	3
2.	PR8592	Welding Technology	PE	3	3	0	0	3
3.	ME8096	Gas Dynamics and Jet Propulsion	PE	3	3	0	0	3
4.	GE8075	Intellectual Property Rights	PE	3	3	0	0	3
5.	GE8073	Fundamentals of Nanoscience	PE	3	3	0	0	3

SEMESTER VII, ELECTIVE II

SL. NO.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Ρ	С
1.	ME8071	Refrigeration and Air conditioning	PE	3	3	0	0	3
2.	ME8072	Renewable Sources of Energy	PE	3	3	0	0	3
3.	ME8098	Quality Control and Reliability	PE	3	3	0	0	3
		Engineering						
4.	ME8073	Unconventional Machining	PE	3	3	0	0	3
		Processes						
5.	MG8491	Operations Research	PE	3	3	0	0	3
6.	MF8071	Additive Manufacturing	PE	3	3	0	0	3
7.	GE8077	Total Quality Management	PE	3	3	0	0	3

SEMESTER VII, ELECTIVE III

SL. NO.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Ρ	С
1.	ME8099	Robotics	PE	3	3	0	0	3
2.	ME8095	Design of Jigs, Fixtures and Press Tools	PE	3	3	0	0	3
3.	ME8093	Computational Fluid Dynamics	PE	3	3	0	0	3
4.	ME8097	Non Destructive Testing and	PE	3	3	0	0	3
		Evaluation						
5.	ME8092	Composite Materials and	PE	3	3	0	0	3
		Mechanics						
6.	GE8072	Foundation Skills in Integrated	PE	3	3	0	0	3
		Product Development						
7.	GE8074	Human Rights	PE	3	3	0	0	3
8.	GE8071	Disaster Management	PE	3	3	0	0	3

SEMESTER VIII, ELECTIVE IV

SL. NO.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Ρ	С
1.	IE8693	Production Planning and Control	PE	3	3	0	0	3
2.	MG8091	Entrepreneurship Development	PE	3	3	0	0	3
3.	ME8094	Computer Integrated	PE	3	2	0	0	2
		Manufacturing Systems			3	0	0	3
4.	ME8074	Vibration and Noise Control	PE	3	3	0	0	3
5.	EE8091	Micro Electro Mechanical	PE	3	3	0	0	3
		Systems						
6.	GE8076	Professional Ethics in Engineering	PE	3	3	0	0	3

EMPLOYABILITY ENHANCEMENT COURSES (EEC)

SL. NO.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	т	Ρ	С
1.	HS8381	Interpersonal Skills/Listening &	EEC	4	0	0	4	2
2.	ME8712	Technical Seminar	EEC	2	0	0	2	1
3.	ME8811	Project Work	EEC	20	0	0	20	12
4.	HS8461	Advanced Reading and Writing	EEC	2	0	0	2	1
5.	ME8682	Design and Fabrication Project	EEC	4	0	0	4	2
6.	HS8581	Professional Communication	EEC	2	0	0	2	1

SUMMARY

SL.	SUBJECT		CF	REDITS	PER S	EME	STER			CREDITS TOTAL	Percentage %
NO.	AREA	I	11		IV	V	VI	VII	VIII		
1.	HS	4	7	-	-	-		-	3	14	7.61%
2.	BS	12	7	4	4	-	-	-	-	27	14.67%
3.	ES	9	11	9	5	-	-	-	-	33	17.80%
4.	PC	-	-	11	14	19	18	13	-	74	40.22%
5.	PE	-	-	-	-	-	3	6	3	15	8.15%
6.	OE	-	-	-	-	3	-	3		6	3.26%
7.	EEC	-	-	1	1	-	3	1	10	16	7.6%
	Total	25	25	25	24	22	24	23	16	184	
8.	Non Credit / Mandatory										

HS8151 COMMUNICATIVE ENGLISH	4	0	0	4
	L .	I	Г	C

OBJECTIVES:

- To develop the basic reading and writing skills of first year engineering and technology students.
- To help learners develop their listening skills, which will, enable them listen to lectures and comprehend them by asking questions; seeking clarifications.
- To help learners develop their speaking skills and speak fluently in real contexts.
- To help learners develop vocabulary of a general kind by developing their reading skills

UNIT I SHARING INFORMATION RELATED TO ONESELF/FAMILY & FRIENDS 12

Reading- short comprehension passages, practice in skimming-scanning and predicting- Writingcompleting sentences- - developing hints. Listening- short texts- short formal and informal conversations. Speaking- introducing oneself - exchanging personal information- Language development- Wh- Questions- asking and answering-yes or no questions- parts of speech. Vocabulary development-- prefixes- suffixes- articles.- count/ uncount nouns.

UNIT II GENERAL READING AND FREE WRITING

Reading - comprehension-pre-reading-post reading- comprehension questions (multiple choice questions and /or short questions/ open-ended questions)-inductive reading- short narratives and descriptions from newspapers including dialogues and conversations (also used as short Listening texts)- register- Writing – paragraph writing- topic sentence- main ideas- free writing, short narrative descriptions using some suggested vocabulary and structures –Listening- telephonic conversations. Speaking – sharing information of a personal kind—greeting – taking leave- Language development – prepositions, conjunctions Vocabulary development- guessing meanings of words in context.

UNIT III GRAMMAR AND LANGUAGE DEVELOPMENT

Reading- short texts and longer passages (close reading) Writing- understanding text structure- use of reference words and discourse markers-coherence-jumbled sentences Listening – listening to longer texts and filling up the table- product description- narratives from different sources. Speaking-asking about routine actions and expressing opinions. Language development- degrees of comparison- pronouns- direct vs indirect questions- Vocabulary development – single word substitutes- adverbs.

UNIT IV READING AND LANGUAGE DEVELOPMENT

Reading- comprehension-reading longer texts- reading different types of texts- magazines Writingletter writing, informal or personal letters-e-mails-conventions of personal email- Listening- listening to dialogues or conversations and completing exercises based on them. Speaking- speaking about oneself- speaking about one's friend- Language development- Tenses- simple present-simple pastpresent continuous and past continuous- Vocabulary development- synonyms-antonyms- phrasal verbs

UNIT V EXTENDED WRITING

Reading- longer texts- close reading –Writing- brainstorming -writing short essays – developing an outline- identifying main and subordinate ideas- dialogue writing-Listening – listening to talks-conversations- Speaking – participating in conversations- short group conversations-Language development-modal verbs- present/ past perfect tense - Vocabulary development-collocations- fixed and semi-fixed expressions

TOTAL: 60 PERIODS

12

12

12

OUTCOMES:

At the end of the course, learners will be able to:

- Read articles of a general kind in magazines and newspapers.
- Participate effectively in informal conversations; introduce themselves and their friends and express opinions in English.
- Comprehend conversations and short talks delivered in English
- Write short essays of a general kind and personal letters and emails in English.

TEXT BOOKS:

- 1. Board of Editors. Using English A Course book for Undergraduate Engineers and Technologists. Orient BlackSwan Limited, Hyderabad: 2015
- 2. Richards, C. Jack. Interchange Students' Book-2 New Delhi: CUP, 2015.

REFERENCES

- 1 Bailey, Stephen. Academic Writing: A practical guide for students. New York: Rutledge,2011.
- 2 Means,L. Thomas and Elaine Langlois. English & Communication For Colleges. CengageLearning ,USA: 2007
- 3 Redston, Chris & Gillies Cunningham Face2Face (Pre-intermediate Student's Book& Workbook) Cambridge University Press, New Delhi: 2005
- 4 Comfort, Jeremy, et al. Speaking Effectively: Developing Speaking Skills for Business English. Cambridge University Press, Cambridge: Reprint 2011
- 5 Dutt P. Kiranmai and Rajeevan Geeta. Basic Communication Skills, Foundation Books: 2013

MA8151	ENGINEERING MATHEMATICS – I	L	Т	Ρ	С
		4	0	0	4

OBJECTIVES :

The goal of this course is to achieve conceptual understanding and to retain the best traditions of traditional calculus. The syllabus is designed to provide the basic tools of calculus mainly for the purpose of modeling the engineering problems mathematically and obtaining solutions. This is a foundation course which mainly deals with topics such as single variable and multivariable calculus and plays an important role in the understanding of science, engineering, economics and computer science, among other disciplines.

UNIT I DIFFERENTIAL CALCULUS

Representation of functions - Limit of a function - Continuity - Derivatives - Differentiation rules - Maxima and Minima of functions of one variable.

UNIT II FUNCTIONS OF SEVERAL VARIABLES

Partial differentiation – Homogeneous functions and Euler's theorem – Total derivative – Change of variables – Jacobians – Partial differentiation of implicit functions – Taylor's series for functions of two variables – Maxima and minima of functions of two variables – Lagrange's method of undetermined multipliers.

UNIT III INTEGRAL CALCULUS

Definite and Indefinite integrals - Substitution rule - Techniques of Integration - Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction, Integration of irrational functions - Improper integrals.

12

12

UNIT IV MULTIPLE INTEGRALS

Double integrals – Change of order of integration – Double integrals in polar coordinates – Area enclosed by plane curves – Triple integrals – Volume of solids – Change of variables in double and triple integrals.

UNIT V DIFFERENTIAL EQUATIONS

Higher order linear differential equations with constant coefficients - Method of variation of parameters – Homogenous equation of Euler's and Legendre's type – System of simultaneous linear differential equations with constant coefficients - Method of undetermined coefficients.

OUTCOMES:

After completing this course, students should demonstrate competency in the following skills:

- Use both the limit definition and rules of differentiation to differentiate functions.
- Apply differentiation to solve maxima and minima problems.
- Evaluate integrals both by using Riemann sums and by using the Fundamental Theorem of Calculus.
- Apply integration to compute multiple integrals, area, volume, integrals in polar coordinates, in addition to change of order and change of variables.
- Evaluate integrals using techniques of integration, such as substitution, partial fractions and integration by parts.
- Determine convergence/divergence of improper integrals and evaluate convergent improper integrals.
- Apply various techniques in solving differential equations.

TEXT BOOKS :

- 1. Grewal B.S., "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 43rd Edition, 2014.
- James Stewart, "Calculus: Early Transcendentals", Cengage Learning, 7th Edition, New Delhi, 2015. [For Units I & III Sections 1.1, 2.2, 2.3, 2.5, 2.7(Tangents problems only), 2.8, 3.1 to 3.6, 3.11, 4.1, 4.3, 5.1(Area problems only), 5.2, 5.3, 5.4 (excluding net change theorem), 5.5, 7.1 7.4 and 7.8].

REFERENCES:

- 1. Anton, H, Bivens, I and Davis, S, "Calculus", Wiley, 10th Edition, 2016.
- 2. Jain R.K. and Iyengar S.R.K., "Advanced Engineering Mathematics", Narosa Publications, New Delhi, 3rd Edition, 2007.
- 3. Narayanan, S. and Manicavachagom Pillai, T. K., "Calculus" Volume I and II, S. Viswanathan Publishers Pvt. Ltd., Chennai, 2007.
- 4. Srimantha Pal and Bhunia, S.C, "Engineering Mathematics" Oxford University Press, 2015.
- 5. Weir, M.D and Joel Hass, "Thomas Calculus", 12th Edition, Pearson India, 2016.

12

TOTAL : 60 PERIODS

TOTAL :

45

PH8151

ENGINEERING PHYSICS

OBJECTIVES:

To enhance the fundamental knowledge in Physics and its applications relevant to various streams of Engineering and Technology.

UNIT I **PROPERTIES OF MATTER**

Elasticity - Stress-strain diagram and its uses - factors affecting elastic modulus and tensile strength - torsional stress and deformations - twisting couple - torsion pendulum: theory and experiment - bending of beams - bending moment - cantilever: theory and experiment - uniform and non-uniform bending: theory and experiment - I-shaped girders - stress due to bending in beams.

UNIT II WAVES AND FIBER OPTICS

Oscillatory motion - forced and damped oscillations: differential equation and its solution - plane progressive waves - wave equation. Lasers : population of energy levels, Einstein's A and B coefficients derivation - resonant cavity, optical amplification (qualitative) - Semiconductor lasers: homojunction and heterojunction - Fiber optics: principle, numerical aperture and acceptance angle - types of optical fibres (material, refractive index, mode) - losses associated with optical fibers - fibre optic sensors: pressure and displacement.

UNIT III THERMAL PHYSICS

Transfer of heat energy – thermal expansion of solids and liquids – expansion joints - bimetallic strips - thermal conduction, convection and radiation - heat conductions in solids - thermal conductivity - Forbe's and Lee's disc method: theory and experiment - conduction through compound media (series and parallel) - thermal insulation - applications: heat exchangers, refrigerators, ovens and solar water heaters.

UNIT IV QUANTUM PHYSICS

Black body radiation - Planck's theory (derivation) - Compton effect: theory and experimental verification – wave particle duality – electron diffraction – concept of wave function and its physical significance - Schrödinger's wave equation - time independent and time dependent equations particle in a one-dimensional rigid box – tunnelling (qualitative) - scanning tunnelling microscope.

UNIT V **CRYSTAL PHYSICS**

Single crystalline, polycrystalline and amorphous materials - single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices - inter-planar distances - coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures crystal imperfections: point defects, line defects - Burger vectors, stacking faults - role of imperfections in plastic deformation - growth of single crystals: solution and melt growth techniques.

OUTCOMES:

Upon completion of this course,

- the students will gain knowledge on the basics of properties of matter and its applications,
- the students will acquire knowledge on the concepts of waves and optical devices and their applications in fibre optics,
- the students will have adequate knowledge on the concepts of thermal properties of materials and their applications in expansion joints and heat exchangers,
- the students will get knowledge on advanced physics concepts of quantum theory and its

16

9

9

9

9

9

PERIODS

applications in tunneling microscopes, and

the students will understand the basics of crystals, their structures and different crystal • growth techniques.

TEXT BOOKS:

- 1. Bhattacharya, D.K. & Poonam, T. "Engineering Physics". Oxford University Press, 2015.
- 2. Gaur, R.K. & Gupta, S.L. "Engineering Physics". Dhanpat Rai Publishers, 2012.
- 3. Pandey, B.K. & Chaturvedi, S. "Engineering Physics". Cengage Learning India, 2012.

REFERENCES:

- 1. Halliday, D., Resnick, R. & Walker, J. "Principles of Physics". Wiley, 2015.
- 2. Serway, R.A. & Jewett, J.W. "Physics for Scientists and Engineers". Cengage Learning, 2010.
- 3. Tipler, P.A. & Mosca, G. "Physics for Scientists and Engineers with Modern Physics'. W.H.Freeman, 2007.

CY8151 **ENGINEERING CHEMISTRY** LTPC 3 0 0 3

OBJECTIVES:

- To make the students conversant with boiler feed water requirements, related problems and water treatment techniques.
- To develop an understanding of the basic concepts of phase rule and its applications to single and two component systems and appreciate the purpose and significance of alloys.
- Preparation, properties and applications of engineering materials.
- Types of fuels, calorific value calculations, manufacture of solid, liquid and gaseous fuels.
- Principles and generation of energy in batteries, nuclear reactors, solar cells, wind mills and fuel cells.

WATER AND ITS TREATMENT UNIT I

Hardness of water - types - expression of hardness - units - estimation of hardness of water by EDTA - numerical problems - boiler troubles (scale and sludge) - treatment of boiler feed water -Internal treatment (phosphate, colloidal, sodium aluminate and calgon conditioning) external treatment - Ion exchange process, zeolite process - desalination of brackish water - Reverse Osmosis.

UNIT II SURFACE CHEMISTRY AND CATALYSIS

Adsorption: Types of adsorption – adsorption of gases on solids – adsorption of solute from solutions - adsorption isotherms - Freundlich's adsorption isotherm - Langmuir's adsorption isotherm - contact theory - kinetics of surface reactions, unimolecular reactions, Langmuir - applications of adsorption on pollution abatement.

Catalysis: Catalyst – types of catalysis – criteria – autocatalysis – catalytic poisoning and catalytic promoters - acid base catalysis - applications (catalytic convertor) - enzyme catalysis- Michaelis -Menten equation.

ALLOYS AND PHASE RULE UNIT III

Alloys: Introduction- Definition- properties of alloys- significance of alloying, functions and effect of alloying elements- Nichrome and stainless steel (18/8) - heat treatment of steel. Phase rule: Introduction, definition of terms with examples, one component system -water system - reduced phase rule - thermal analysis and cooling curves - two component systems - lead-silver system -Pattinson process.

9

9

UNIT IV FUELS AND COMBUSTION

Fuels: Introduction - classification of fuels - coal - analysis of coal (proximate and ultimate) - carbonization - manufacture of metallurgical coke (Otto Hoffmann method) - petroleum - manufacture of synthetic petrol (Bergius process) - knocking - octane number - diesel oil - cetane number - natural gas - compressed natural gas (CNG) - liquefied petroleum gases (LPG) - power alcohol and biodiesel. Combustion of fuels: Introduction - calorific value - higher and lower calorific values- theoretical calculation of calorific value - ignition temperature - spontaneous ignition temperature - explosive range - flue gas analysis (ORSAT Method).

UNIT V ENERGY SOURCES AND STORAGE DEVICES

Nuclear fission - controlled nuclear fission - nuclear fusion - differences between nuclear fission and fusion - nuclear chain reactions - nuclear energy - light water nuclear power plant - breeder reactor - solar energy conversion - solar cells - wind energy. Batteries, fuel cells and supercapacitors: Types of batteries – primary battery (dry cell) secondary battery (lead acid battery, lithium-ion-battery) fuel cells – H_2 - O_2 fuel cell.

TOTAL: 45 PERIODS

OUTCOMES:

• The knowledge gained on engineering materials, fuels, energy sources and water treatment techniques will facilitate better understanding of engineering processes and applications for further learning.

TEXT BOOKS:

- 1. S. S. Dara and S. S. Umare, "A Textbook of Engineering Chemistry", S. Chand & Company LTD, New Delhi, 2015
- 2. P. C. Jain and Monika Jain, "Engineering Chemistry" Dhanpat Rai Publishing Company (P) LTD, New Delhi, 2015
- 3. S. Vairam, P. Kalyani and Suba Ramesh, "Engineering Chemistry", Wiley India PVT, LTD, New Delhi, 2013.

REFERENCES:

- 1. Friedrich Emich, "Engineering Chemistry", Scientific International PVT, LTD, New Delhi, 2014.
- 2. Prasanta Rath, "Engineering Chemistry", Cengage Learning India PVT, LTD, Delhi, 2015.
- 3. Shikha Agarwal, "Engineering Chemistry-Fundamentals and Applications", Cambridge University Press, Delhi, 2015.

GE8151 PROBLEM SOLVING AND PYTHON PROGRAMMING L T P C 3 0 0 3

OBJECTIVES:

- To know the basics of algorithmic problem solving
- To read and write simple Python programs.
- To develop Python programs with conditionals and loops.
- To define Python functions and call them.
- To use Python data structures --- lists, tuples, dictionaries.
- To do input/output with files in Python.

UNIT I ALGORITHMIC PROBLEM SOLVING

Algorithms, building blocks of algorithms (statements, state, control flow, functions), notation (pseudo code, flow chart, programming language), algorithmic problem solving, simple strategies for developing algorithms (iteration, recursion). Illustrative problems: find minimum in a list, insert a card in a list of sorted cards, guess an integer number in a range, Towers of Hanoi.

9

9

square root, gcd, exponentiation, sum an array of numbers, linear search, binary search.

CONTROL FLOW, FUNCTIONS

UNIT IV LISTS, TUPLES, DICTIONARIES

Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list parameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods; advanced list processing - list comprehension; Illustrative programs: selection sort, insertion sort, mergesort, histogram.

UNIT V FILES, MODULES, PACKAGES

Files and exception: text files, reading and writing files, format operator; command line arguments, errors and exceptions, handling exceptions, modules, packages; Illustrative programs: word count, copy file.

OUTCOMES:

UNIT III

Upon completion of the course, students will be able to

- Develop algorithmic solutions to simple computational problems
- Read, write, execute by hand simple Python programs.
- Structure simple Python programs for solving problems.
- Decompose a Python program into functions.
- Represent compound data using Python lists, tuples, dictionaries.
- Read and write data from/to files in Python Programs.

TEXT BOOKS:

- 1. Allen B. Downey, ''Think Python: How to Think Like a Computer Scientist", 2nd edition, Updated for Python 3, Shroff/O'Reilly Publishers, 2016 _(http://greenteapress.com/wp/think-python/)
- 2. Guido van Rossum and Fred L. Drake Jr, "An Introduction to Python Revised and updated for Python 3.2, Network Theory Ltd., 2011.

REFERENCES:

- 1. John V Guttag, "Introduction to Computation and Programming Using Python", Revised and expanded Edition, MIT Press, 2013
- 2. Robert Sedgewick, Kevin Wayne, Robert Dondero, "Introduction to Programming in Python: An Inter-disciplinary Approach, Pearson India Education Services Pvt. Ltd., 2016.
- 3. Timothy A. Budd, "Exploring Python", Mc-Graw Hill Education (India) Private Ltd.,, 2015.
- 4. Kenneth A. Lambert, "Fundamentals of Python: First Programs", CENGAGE Learning, 2012.
- 5. Charles Dierbach, "Introduction to Computer Science using Python: A Computational Problem-Solving Focus, Wiley India Edition, 2013.
- 6. Paul Gries, Jennifer Campbell and Jason Montojo, "Practical Programming: An Introduction to Computer Science using Python 3", Second edition, Pragmatic Programmers, LLC, 2013.

UNIT II DATA, EXPRESSIONS, STATEMENTS

Python interpreter and interactive mode; values and types: int, float, boolean, string, and list; variables, expressions, statements, tuple assignment, precedence of operators, comments; modules and functions, function definition and use, flow of execution, parameters and arguments; Illustrative programs: exchange the values of two variables, circulate the values of n variables, distance between two points.

Conditionals: Boolean values and operators, conditional (if), alternative (if-else), chained conditional (if-elif-else); Iteration: state, while, for, break, continue, pass; Fruitful functions: return values,

immutability, string functions and methods, string module; Lists as arrays. Illustrative programs:

parameters, local and global scope, function composition, recursion; Strings:

9

string slices.

9

9

9

TOTAL : 45 PERIODS

PLANE CURVES AND FREEHAND SKETCHING

Basic Geometrical constructions, Curves used in engineering practices: Conics - Construction of ellipse, parabola and hyperbola by eccentricity method - Construction of cycloid - construction of involutes of square and circle – Drawing of tangents and normal to the above curves.

conventions and specifications - Size, layout and folding of drawing sheets - Lettering and

Visualization concepts and Free Hand sketching: Visualization principles –Representation of Three Dimensional objects - Layout of views- Freehand sketching of multiple views from pictorial views of objects

UNIT II **PROJECTION OF POINTS, LINES AND PLANE SURFACE**

CONCEPTS AND CONVENTIONS (Not for Examination)

Orthographic projection- principles-Principal planes-First angle projection-projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes -Determination of true lengths and true inclinations by rotating line method and traces Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method.

PROJECTION OF SOLIDS UNIT III

Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to one of the principal planes by rotating object method.

UNIT IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES

Sectioning of above solids in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other - obtaining true shape of section. Development of lateral surfaces of simple and sectioned solids – Prisms, pyramids cylinders and cones.

UNIT V **ISOMETRIC AND PERSPECTIVE PROJECTIONS**

Principles of isometric projection – isometric scale –Isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions - Perspective projection of simple solids-Prisms, pyramids and cylinders by visual ray method .

OUTCOMES:

On successful completion of this course, the student will be able to

- familiarize with the fundamentals and standards of Engineering graphics •
- perform freehand sketching of basic geometrical constructions and multiple views of objects. •

20

- project orthographic projections of lines and plane surfaces. •
- draw projections and solids and development of surfaces. •
- visualize and to project isometric and perspective sections of simple solids.

OBJECTIVES: To develop in students, graphic skills for communication of concepts, ideas and design of Engineering products.

To expose them to existing national standards related to technical drawings.

ENGINEERING GRAPHICS

dimensioning.

UNIT I

6+12

TOTAL: 90 PERIODS

1 Importance of graphics in engineering applications - Use of drafting instruments - BIS

7+12

6+12

5+12

5+12

TEXT BOOK:

- 1. Natrajan K.V., "A text book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2009.
- 2. Venugopal K. and Prabhu Raja V., "Engineering Graphics", New Age International (P) Limited, 2008.

REFERENCES:

- 1. Bhatt N.D. and Panchal V.M., "Engineering Drawing", Charotar Publishing House, 50th Edition, 2010.
- 2. Basant Agarwal and Agarwal C.M., "Engineering Drawing", Tata McGraw Hill Publishing Company Limited, New Delhi, 2008.
- 3. Gopalakrishna K.R., "Engineering Drawing" (Vol. I&II combined), Subhas Stores, Bangalore, 2007.
- 4. Luzzader, Warren.J. and Duff, John M., "Fundamentals of Engineering Drawing with an introduction to Interactive Computer Graphics for Design and Production, Eastern Economy Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2005.
- 5. N S Parthasarathy and Vela Murali, "Engineering Graphics", Oxford University, Press, New Delhi, 2015.
- 6. Shah M.B., and Rana B.C., "Engineering Drawing", Pearson, 2nd Edition, 2009.

Publication of Bureau of Indian Standards:

- 1. IS 10711 2001: Technical products Documentation Size and lay out of drawing sheets.
- 2. IS 9609 (Parts 0 & 1) 2001: Technical products Documentation Lettering.
- 3. IS 10714 (Part 20) 2001 & SP 46 2003: Lines for technical drawings.
- 4. IS 11669 1986 & SP 46 2003: Dimensioning of Technical Drawings.
- 5. IS 15021 (Parts 1 to 4) 2001: Technical drawings Projection Methods.

Special points applicable to University Examinations on Engineering Graphics:

- 1. There will be five questions, each of either or type covering all units of the syllabus.
- 2. All questions will carry equal marks of 20 each making a total of 100.
- 3. The answer paper shall consist of drawing sheets of A3 size only. The
- students will be permitted to use appropriate scale to fit solution within A3 size.
- 4. The examination will be conducted in appropriate sessions on the same day

GE8161PROBLEM SOLVING AND PYTHON PROGRAMMINGL T P CLABORATORY0 0 4 2

OBJECTIVES:

- To write, test, and debug simple Python programs.
- To implement Python programs with conditionals and loops.
- Use functions for structuring Python programs.
- Represent compound data using Python lists, tuples, dictionaries.
- Read and write data from/to files in Python.

LIST OF PROGRAMS

- 1. Compute the GCD of two numbers.
- 2. Find the square root of a number (Newton's method)
- 3. Exponentiation (power of a number)
- 4. Find the maximum of a list of numbers
- 5. Linear search and Binary search
- 6. Selection sort, Insertion sort

- 7. Merge sort
- 8. First n prime numbers
- 9. Multiply matrices
- 10. Programs that take command line arguments (word count)
- 11. Find the most frequent words in a text read from a file
- 12. Simulate elliptical orbits in Pygame
- 13. Simulate bouncing ball using Pygame

PLATFORM NEEDED

Python 3 interpreter for Windows/Linux

OUTCOMES:

Upon completion of the course, students will be able to

- Write, test, and debug simple Python programs.
- Implement Python programs with conditionals and loops.
- Develop Python programs step-wise by defining functions and calling them.
- Use Python lists, tuples, dictionaries for representing compound data.
- Read and write data from/to files in Python.

TOTAL :60 PERIODS

BS8161 PHYSICS AND CHEMISTRY LABORATORY LABORATORY LABORATORY LABORATORY LABORATORY DO 0 0 4 2

OBJECTIVES:

 To introduce different experiments to test basic understanding of physics concepts applied in optics, thermal physics, properties of matter and liquids.

LIST OF EXPERIMENTS: PHYSICS LABORATORY (Any 5 Experiments)

- 1. Determination of rigidity modulus Torsion pendulum
- 2. Determination of Young's modulus by non-uniform bending method
- 3. (a) Determination of wavelength, and particle size using Laser(b) Determination of acceptance angle in an optical fiber.
- 4. Determination of thermal conductivity of a bad conductor Lee's Disc method.
- 5. Determination of velocity of sound and compressibility of liquid Ultrasonic interferometer
- 6. Determination of wavelength of mercury spectrum spectrometer grating
- 7. Determination of band gap of a semiconductor
- 8. Determination of thickness of a thin wire Air wedge method

TOTAL: 30 PERIODS

OUTCOMES:

Upon completion of the course, the students will be able to

• apply principles of elasticity, optics and thermal properties for engineering applications.

CHEMISTRY LABORATORY: (Any seven experiments to be conducted)

OBJECTIVES:

- To make the student to acquire practical skills in the determination of water quality parameters through volumetric and instrumental analysis.
- To acquaint the students with the determination of molecular weight of a polymer by viscometery.
 - 1. Estimation of HCl using Na₂CO₃ as primary standard and Determination of alkalinity in water sample.
 - 2. Determination of total, temporary & permanent hardness of water by EDTA method.
 - 3. Determination of DO content of water sample by Winkler's method.
 - 4. Determination of chloride content of water sample by argentometric method.
 - 5. Estimation of copper content of the given solution by lodometry.
 - 6. Determination of strength of given hydrochloric acid using pH meter.
 - 7. Determination of strength of acids in a mixture of acids using conductivity meter.
 - 8. Estimation of iron content of the given solution using potentiometer.
 - 9. Estimation of iron content of the water sample using spectrophotometer (1, 10-Phenanthroline / thiocyanate method).
 - 10. Estimation of sodium and potassium present in water using flame photometer.
 - 11. Determination of molecular weight of polyvinyl alcohol using Ostwald viscometer.
 - 12. Pseudo first order kinetics-ester hydrolysis.
 - 13. Corrosion experiment-weight loss method.
 - 14. Determination of CMC.
 - 15. Phase change in a solid.
 - 16. Conductometric titration of strong acid vs strong base.

OUTCOMES:

 The students will be outfitted with hands-on knowledge in the quantitative chemical analysis of water quality related parameters.
 TOTAL: 30 PERIODS

TEXTBOOKS:

1. Vogel's Textbook of Quantitative Chemical Analysis (8TH edition, 2014)

HS8251

TECHNICAL ENGLISH

L T 4 0

OBJECTIVES:

The Course prepares second semester engineering and Technology students to:

- Develop strategies and skills to enhance their ability to read and comprehend engineering and technology texts.
- Foster their ability to write convincing job applications and effective reports.
- Develop their speaking skills to make technical presentations, participate in group discussions.
- Strengthen their listening skill which will help them comprehend lectures and talks in their areas of specialisation.

UNIT I INTRODUCTION TECHNICAL ENGLISH

Listening- Listening to talks mostly of a scientific/technical nature and completing information-gap exercises- Speaking –Asking for and giving directions- Reading – reading short technical texts from journals- newspapers- Writing- purpose statements – extended definitions – issue- writing instructions – checklists-recommendations-Vocabulary Development- technical vocabulary Language Development –subject verb agreement - compound words.

12

С

4

Ρ

UNIT II READING AND STUDY SKILLS

Listening- Listening to longer technical talks and completing exercises based on them-Speaking – describing a process-Reading – reading longer technical texts- identifying the various transitions in a text- paragraphing- Writing- interpreting cgarts, graphs- Vocabulary Development-vocabularyused in formal letters/emails and reports Language Development- impersonal passive voice, numerical adjectives.

UNIT III TECHNICAL WRITING AND GRAMMAR

Listening- Listening to classroom lectures/ talkls on engineering/technology -Speaking – introduction to technical presentations- Reading – longer texts both general and technical, practice in speed reading; Writing-Describing a process, use of sequence words- Vocabulary Development- sequence words- Misspelled words. Language Development- embedded sentences

UNIT IV REPORT WRITING

Listening- Listening to documentaries and making notes. Speaking – mechanics of presentations-Reading – reading for detailed comprehension- Writing- email etiquette- job application – cover letter –Résumé preparation(via email and hard copy)- analytical essays and issue based essays--Vocabulary Development- finding suitable synonyms-paraphrasing-. Language Developmentclauses- if conditionals.

UNIT V GROUP DISCUSSION AND JOB APPLICATIONS

Listening- TED/Ink talks; Speaking –participating in a group discussion -Reading– reading and understanding technical articles Writing– Writing reports- minutes of a meeting- accident and survey-Vocabulary Development- verbal analogies Language Development- reported speech

TOTAL : 60 PERIODS

OUTCOMES:

At the end of the course learners will be able to:

- Read technical texts and write area- specific texts effortlessly.
- Listen and comprehend lectures and talks in their area of specialisation successfully.
- Speak appropriately and effectively in varied formal and informal contexts.
- Write reports and winning job applications.

TEXT BOOKS:

- 1. Board of editors. Fluency in English A Course book for Engineering and Technology. Orient Black swan, Hyderabad: 2016
- 2. Sudharshana.N.P and Saveetha. C. English for Technical Communication. Cambridge University Press: New Delhi, 2016.

REFERENCES

- 1. Raman, Meenakshi and Sharma, Sangeetha- Technical Communication Principles and Practice.Oxford University Press: New Delhi,2014.
- 2. Kumar, Suresh. E. Engineering English. Orient Blackswan: Hyderabad, 2015
- 3. Booth-L. Diana, Project Work, Oxford University Press, Oxford: 2014.
- 4. Grussendorf, Marion, English for Presentations, Oxford University Press, Oxford: 2007
- 5. Means, L. Thomas and Elaine Langlois, English & Communication For Colleges. Cengage Learning, USA: 2007

Students can be asked to read Tagore, Chetan Bhagat and for supplementary reading.

12

12

12

25

ENGINEERING MATHEMATICS – II

OBJECTIVES:

MA8251

This course is designed to cover topics such as Matrix Algebra, Vector Calculus, Complex Analysis and Laplace Transform. Matrix Algebra is one of the powerful tools to handle practical problems arising in the field of engineering. Vector calculus can be widely used for modelling the various laws of physics. The various methods of complex analysis and Laplace transforms can be used for efficiently solving the problems that occur in various branches of engineering disciplines.

UNIT I MATRICES

Eigen values and Eigenvectors of a real matrix – Characteristic equation – Properties of Eigen values and Eigenvectors - Cayley-Hamilton theorem - Diagonalization of matrices - Reduction of a auadratic form to canonical form by orthogonal transformation - Nature of guadratic forms.

UNIT II **VECTOR CALCULUS**

Gradient and directional derivative - Divergence and curl - Vector identities - Irrotational and Solenoidal vector fields - Line integral over a plane curve - Surface integral - Area of a curved surface - Volume integral - Green's, Gauss divergence and Stoke's theorems - Verification and application in evaluating line, surface and volume integrals.

UNIT III ANALYTIC FUNCTIONS

Analytic functions - Necessary and sufficient conditions for analyticity in Cartesian and polar coordinates - Properties - Harmonic conjugates - Construction of analytic function - Conformal

mapping – Mapping by functions
$$w = z + c$$
, $cz, \frac{1}{z}, z^2$ - Bilinear transformation.

UNIT IV COMPLEX INTEGRATION

Line integral - Cauchy's integral theorem - Cauchy's integral formula - Taylor's and Laurent's series - Singularities - Residues - Residue theorem - Application of residue theorem for evaluation of real integrals – Use of circular contour and semicircular contour.

UNIT V LAPLACE TRANSFORMS

Existence conditions - Transforms of elementary functions - Transform of unit step function and unit impulse function – Basic properties – Shifting theorems -Transforms of derivatives and integrals – Initial and final value theorems - Inverse transforms - Convolution theorem - Transform of periodic functions - Application to solution of linear second order ordinary differential equations with constant coefficients.

OUTCOMES:

After successfully completing the course, the student will have a good understanding of the following topics and their applications:

- Eigen values and eigenvectors, diagonalization of a matrix, Symmetric matrices, Positive definite matrices and similar matrices.
- Gradient, divergence and curl of a vector point function and related identities.
- Evaluation of line, surface and volume integrals using Gauss, Stokes and Green's theorems and their verification.
- Analytic functions, conformal mapping and complex integration.
- Laplace transform and inverse transform of simple functions, properties, various related theorems and application to differential equations with constant coefficients.

12

12

12

TOTAL: 60 PERIODS

12

12

Ρ С

Λ Λ

Т

TEXT BOOKS :

- 1. Grewal B.S., "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 43rd Edition, 2014.
- 2. Kreyszig Erwin, "Advanced Engineering Mathematics ", John Wiley and Sons, 10th Edition, New Delhi, 2016.

REFERENCES:

- 1. Bali N., Goyal M. and Watkins C., "Advanced Engineering Mathematics", Firewall Media (An imprint of Lakshmi Publications Pvt., Ltd.,), New Delhi, 7th Edition, 2009.
- 2. Jain R.K. and Iyengar S.R.K., "Advanced Engineering Mathematics ", Narosa Publications, New Delhi, 3rd Edition, 2007.
- 3. O'Neil, P.V. "Advanced Engineering Mathematics", Cengage Learning India Pvt., Ltd, New Delhi, 2007.
- 4. Sastry, S.S, "Engineering Mathematics", Vol. I & II, PHI Learning Pvt. Ltd, 4th Edition, New Delhi, 2014.
- 5. Wylie, R.C. and Barrett, L.C., "Advanced Engineering Mathematics "Tata McGraw Hill Education Pvt. Ltd, 6th Edition, New Delhi, 2012.

	MATERIALS SCIENCE	L	Т	Ρ	С
PH8251	(Common to courses offered in Faculty of Mechanical Engineering	3	0	0	3
	Except B.E. Materials Science and Engineering)				

OBJECTIVES:

• To introduce the essential principles of materials science for mechanical and related engineering applications.

UNIT I PHASE DIAGRAMS

Solid solutions - Hume Rothery's rules – the phase rule - single component system - one-component system of iron - binary phase diagrams - isomorphous systems - the tie-line rule - the lever rule - application to isomorphous system - eutectic phase diagram - peritectic phase diagram - other invariant reactions – free energy composition curves for binary systems - microstructural change during cooling.

UNIT II FERROUS ALLOYS

The iron-carbon equilibrium diagram - phases, invariant reactions - microstructure of slowly cooled steels - eutectoid steel, hypo and hypereutectoid steels - effect of alloying elements on the Fe-C system - diffusion in solids - Fick's laws - phase transformations - T-T-T-diagram for eutectoid steel – pearlitic, baintic and martensitic transformations - tempering of martensite – steels – stainless steels – cast irons.

UNIT III MECHANICAL PROPERTIES

Tensile test - plastic deformation mechanisms - slip and twinning - role of dislocations in slip - strengthening methods - strain hardening - refinement of the grain size - solid solution strengthening - precipitation hardening - creep resistance - creep curves - mechanisms of creep - creep-resistant materials - fracture - the Griffith criterion - critical stress intensity factor and its determination - fatigue failure - fatigue tests - methods of increasing fatigue life - hardness - Rockwell and Brinell hardness - Knoop and Vickers microhardness.

26

9

9

27

UNIT I ELECTRICAL CIRCUITS

Basic circuit components -, Ohms Law - Kirchoff's Law - Instantaneous Power - Inductors -Capacitors - Independent and Dependent Sources - steady state solution of DC circuits - Nodal analysis, Mesh analysis- Thevinin's Theorem, Norton's Theorem, Maximum Power transfer theorem-Linearity and Superposition Theorem.

UNIT IV MAGNETIC, DIELECTRIC AND SUPERCONDUCTING MATERIALS

Ferromagnetism - domain theory - types of energy - hysteresis - hard and soft magnetic materials ferrites - dielectric materials - types of polarization - Langevin-Debye equation - frequency effects on polarization - dielectric breakdown - insulating materials - Ferroelectric materials - superconducting materials and their properties.

UNIT V **NEW MATERIALS**

Ceramics - types and applications - composites: classification, role of matrix and reinforcement, processing of fiber reinforced plastics - metallic glasses: types, glass forming ability of alloys, melt spinning process, applications - shape memory alloys: phases, shape memory effect, pseudoelastic effect, NiTi alloy, applications – nanomaterials: preparation (bottom up and top down approaches), properties and applications - carbon nanotubes: types. TOTAL : 45 PERIODS

OUTCOMES:

Upon completion of this course,

- the students will have knowledge on the various phase diagrams and their applications
- the students will acquire knowledge on Fe-Fe₃C phase diagram, various microstructures and allovs
- the students will get knowledge on mechanical properties of materials and their measurement
- the students will gain knowledge on magnetic, dielectric and superconducting properties of materials
- the students will understand the basics of ceramics, composites and nanomaterials.

TEXT BOOKS:

- Balasubramaniam, R. "Callister's Materials Science and Engineering". Wiley India Pvt. Ltd., 1. 2014.
- 2. Raghavan, V. "Physical Metallurgy: Principles and Practice". PHI Learning, 2015.
- 3. Raghavan, V. "Materials Science and Engineering : A First course". PHI Learning, 2015.

REFERENCES

- 1. Askeland, D. "Materials Science and Engineering". Brooks/Cole, 2010.
- Smith, W.F., Hashemi, J. & Prakash, R. "Materials Science and Engineering". 2. Tata McGraw Hill Education Pvt. Ltd., 2014.
- 3. Wahab, M.A. "Solid State Physics: Structure and Properties of Materials". Narosa Publishing House, 2009.

BE8253 BASIC ELECTRICAL, ELECTRONICS AND INSTRUMENTATION LTPC ENGINEERING

OBJECTIVES:

To impart knowledge on

- Electric circuit laws, single and three phase circuits and wiring
- Working principles of Electrical Machines
- Working principle of Various electronic devices and measuring instruments

9

3 0 0 3

UNIT II AC CIRCUITS

Introduction to AC circuits – waveforms and RMS value – power and power factor, single phase and three-phase balanced circuits – Three phase loads - housing wiring, industrial wiring, materials of wiring

UNIT III ELECTRICAL MACHINES

Principles of operation and characteristics of ; DC machines, Transformers (single and three phase) ,Synchronous machines , three phase and single phase induction motors.

UNIT IV ELECTRONIC DEVICES & CIRCUITS

Types of Materials – Silicon & Germanium- N type and P type materials – PN Junction –Forward and Reverse Bias –Semiconductor Diodes –Bipolar Junction Transistor – Characteristics – Field Effect Transistors – Transistor Biasing –Introduction to operational Amplifier –Inverting Amplifier –Non Inverting Amplifier –DAC – ADC .

UNIT V MEASUREMENTS & INSTRUMENTATION

Introduction to transducers - Classification of Transducers: Resistive, Inductive, Capacitive, Thermoelectric, piezoelectric, photoelectric, Hall effect and Mechanical - ,Classification of instruments - Types of indicating Instruments - multimeters –Oscilloscopes- – three-phase power measurements

- Types of indicating instruments - indiameter
 - instrument transformers (CT and PT)

TOTAL: 45 PERIODS

OUTCOMES:

Ability to

- Understand electric circuits and working principles of electrical machines
- Understand the concepts of various electronic devices
- Choose appropriate instruments for electrical measurement for a specific application

TEXT BOOKS

- 1. Leonard S Bobrow, "Foundations of Electrical Engineering", Oxford University Press, 2013
- 2. D P Kothari and I.J Nagarath, "Electrical Machines "Basic Electrical and Electronics Engineering", McGraw Hill Education(India) Private Limited, Third Reprint ,2016
- 3. Thereja .B.L., "Fundamentals of Electrical Engineering and Electronics", S. Chand & Co. Ltd., 2008

REFERENCES

- 1. Del Toro, "Electrical Engineering Fundamentals", Pearson Education, New Delhi, 2007
- 2. John Bird, "Electrical Circuit Theory and Technology", Elsevier, First Indian Edition, 2006
- 3. Allan S Moris, "Measurement and Instrumentation Principles", Elseveir, First Indian Edition, 2006
- 4. Rajendra Prasad, "Fundamentals of Electrical Engineering", Prentice Hall of India, 2006
- 5. A.E.Fitzgerald, David E Higginbotham and Arvin Grabel, "Basic Electrical Engineering", McGraw Hill Education(India) Private Limited, 2009
- 6. N K De, Dipu Sarkar, "Basic Electrical Engineering", Universities Press (India) Private Limited 2016

9

9 ;)

9

GE8291

ENVIRONMENTAL SCIENCE AND ENGINEERING

14

OBJECTIVES:

- To study the nature and facts about environment.
- To finding and implementing scientific, technological, economic and political solutions to environmental problems.
- To study the interrelationship between living organism and environment.
- To appreciate the importance of environment by assessing its impact on the human world; envision the surrounding environment, its functions and its value.
- To study the dynamic processes and understand the features of the earth's interior and surface.
- To study the integrated themes and biodiversity, natural resources, pollution control and waste management.

UNIT I ENVIRONMENT, ECOSYSTEMS AND BIODIVERSITY

Definition, scope and importance of environment – need for public awareness - concept of an ecosystem – structure and function of an ecosystem – producers, consumers and decomposers – energy flow in the ecosystem – ecological succession – food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the (a) forest ecosystem (b) grassland ecosystem (c) desert ecosystem (d) aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) – Introduction to biodiversity definition: genetic, species and ecosystem diversity – biogeographical classification of India – value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values – Biodiversity at global, national and local levels – India as a mega-diversity nation – hot-spots of biodiversity – threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – conservation of biodiversity: In-situ and ex-situ conservation of biodiversity. Field study of common plants, insects, birds; Field study of simple ecosystems – pond, river, hill slopes, etc.

UNIT II ENVIRONMENTAL POLLUTION

Definition – causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards – solid waste management: causes, effects and control measures of municipal solid wastes – role of an individual in prevention of pollution – pollution case studies – disaster management: floods, earthquake, cyclone and landslides. Field study of local polluted site – Urban / Rural / Industrial / Agricultural.

UNIT III NATURAL RESOURCES

Forest resources: Use and over-exploitation, deforestation, case studies- timber extraction, mining, dams and their effects on forests and tribal people – Water resources: Use and over- utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Growing energy needs, renewable and non renewable energy sources, use of alternate energy sources. case studies – Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification – role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles. Field study of local area to document environmental assets – river / forest / grassland / hill / mountain.

10

UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT

From unsustainable to sustainable development – urban problems related to energy – water conservation, rain water harvesting, watershed management – resettlement and rehabilitation of people; its problems and concerns, case studies – role of non-governmental organization-environmental ethics: Issues and possible solutions – climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust, case studies. – wasteland reclamation – consumerism and waste products – environment production act – Air (Prevention and Control of Pollution) act – Water (Prevention and control of Pollution) act – Widlife protection act – Forest conservation act – enforcement machinery involved in environmental legislation- central and state pollution control boards- Public awareness.

UNIT V HUMAN POPULATION AND THE ENVIRONMENT

Population growth, variation among nations – population explosion – family welfare programme – environment and human health – human rights – value education – HIV / AIDS – women and child welfare – role of information technology in environment and human health – Case studies.

TOTAL: 45 PERIODS

OUTCOMES:

- Environmental Pollution or problems cannot be solved by mere laws. Public participation is an important aspect which serves the environmental Protection. One will obtain knowledge on the following after completing the course.
- Public awareness of environmental is at infant stage.
- Ignorance and incomplete knowledge has lead to misconceptions
- Development and improvement in std. of living has lead to serious environmental disasters

TEXTBOOKS:

- 1. Benny Joseph, 'Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, 2006.
- 2. Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, 2004.

REFERENCES:

- 1. Dharmendra S. Sengar, 'Environmental law', Prentice hall of India PVT LTD, New Delhi, 2007.
- 2. Erach Bharucha, "Textbook of Environmental Studies", Universities Press(I) PVT, LTD, Hydrabad, 2015.
- 3. Rajagopalan, R, 'Environmental Studies-From Crisis to Cure', Oxford University Press, 2005.
- 4. G. Tyler Miller and Scott E. Spoolman, "Environmental Science", Cengage Learning India PVT, LTD, Delhi, 2014.

GE8292

ENGINEERING MECHANICS

L T P C 3 2 0 4

OBJECTIVES:

• To develop capacity to predict the effect of force and motion in the course of carrying out the design functions of engineering.

UNIT I STATICS OF PARTICLES

Introduction – Units and Dimensions – Laws of Mechanics – Lami's theorem, Parallelogram and triangular Law of forces – Vectorial representation of forces – Vector operations of forces - additions, subtraction, dot product, cross product – Coplanar Forces – rectangular components – Equilibrium of a particle – Forces in space – Equilibrium of a particle in space – Equivalent systems of forces – Principle of transmissibility.

UNIT II EQUILIBRIUM OF RIGID BODIES

Free body diagram – Types of supports –Action and reaction forces – stable equilibrium – Moments and Couples – Moment of a force about a point and about an axis – Vectorial representation of moments and couples – Scalar components of a moment – Varignon's theorem – Single equivalent force -Equilibrium of Rigid bodies in two dimensions – Equilibrium of Rigid bodies in three dimensions

UNIT III PROPERTIES OF SURFACES AND SOLIDS

Centroids and centre of mass – Centroids of lines and areas - Rectangular, circular, triangular areas by integration – T section, I section, - Angle section, Hollow section by using standard formula – Theorems of Pappus - Area moments of inertia of plane areas – Rectangular, circular, triangular areas by integration – T section, I section, Angle section, Hollow section by using standard formula – Parallel axis theorem and perpendicular axis theorem – Principal moments of inertia of plane areas – Principal axes of inertia-Mass moment of inertia –mass moment of inertia for prismatic, cylindrical and spherical solids from first principle – Relation to area moments of inertia.

UNIT IV DYNAMICS OF PARTICLES

Displacements, Velocity and acceleration, their relationship – Relative motion – Curvilinear motion - Newton's laws of motion – Work Energy Equation– Impulse and Momentum – Impact of elastic bodies.

UNIT V FRICTION AND RIGID BODY DYNAMICS

Friction force – Laws of sliding friction – equilibrium analysis of simple systems with sliding friction – wedge friction-. Rolling resistance -Translation and Rotation of Rigid Bodies – Velocity and acceleration – General Plane motion of simple rigid bodies such as cylinder, disc/wheel and sphere.

TOTAL: 45+30=75 PERIODS

OUTCOMES:

On successful completion of this course, the student will be able to

- illustrate the vectorial and scalar representation of forces and moments
- analyse the rigid body in equilibrium
- evaluate the properties of surfaces and solids
- calculate dynamic forces exerted in rigid body
- determine the friction and the effects by the laws of friction

TEXT BOOKS:

- 1. Beer, F.P and Johnston Jr. E.R., "Vector Mechanics for Engineers (In SI Units): Statics and Dynamics", 8th Edition, Tata McGraw-Hill Publishing company, New Delhi (2004).
- 2. Vela Murali, "Engineering Mechanics", Oxford University Press (2010)

REFERENCES:

- 1. Bhavikatti, S.S and Rajashekarappa, K.G., "Engineering Mechanics", New Age International (P) Limited Publishers, 1998.
- 2. Hibbeller, R.C and Ashok Gupta, "Engineering Mechanics: Statics and Dynamics", 11th Edition, Pearson Education 2010.
- 3. Irving H. Shames and Krishna Mohana Rao. G., "Engineering Mechanics Statics and Dynamics", 4th Edition, Pearson Education 2006.
- 4. Meriam J.L. and Kraige L.G., "Engineering Mechanics- Statics Volume 1, Dynamics- Volume 2", Third Edition, John Wiley & Sons, 1993.
- 5. Rajasekaran S and Sankarasubramanian G., "Engineering Mechanics Statics and Dynamics", 3rd Edition, Vikas Publishing House Pvt. Ltd., 2005.

9+6

9+6

9+6

9+6

GE8261

ENGINEERING PRACTICES LABORATORY

OBJECTIVES:

To provide exposure to the students with hands on experience on various basic engineering practices in Civil, Mechanical, Electrical and Electronics Engineering.

GROUP A (CIVIL & MECHANICAL)

CIVIL ENGINEERING PRACTICE

13

18

Buildings:

(a) Study of plumbing and carpentry components of residential and industrial buildings. Safety aspects.

Plumbing Works:

- (a) Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers, elbows in household fittings.
- (b) Study of pipe connections requirements for pumps and turbines.
- (c) Preparation of plumbing line sketches for water supply and sewage works.
- (d) Hands-on-exercise: Basic pipe connections – Mixed pipe material connection – Pipe connections with different joining components.
- (e) Demonstration of plumbing requirements of high-rise buildings.

Carpentry using Power Tools only:

- (a) Study of the joints in roofs, doors, windows and furniture.
- (b) Hands-on-exercise:

Wood work, joints by sawing, planing and cutting.

L

II MECHANICAL ENGINEERING PRACTICE

Welding:

(a) Preparation of butt joints, lap joints and T- joints by Shielded metal arc welding.

(b) Gas welding practice

Basic Machining:

- (a) Simple Turning and Taper turning
- (b) Drilling Practice

Sheet Metal Work:

- (a) Forming & Bending:
- (b) Model making Trays and funnels.
- (c) Different type of joints.

Machine assembly practice:

- (a) Study of centrifugal pump
- (b) Study of air conditioner

Demonstration on:

- (a) Smithy operations, upsetting, swaging, setting down and bending. Example Exercise Production of hexagonal headed bolt.
- (b) Foundry operations like mould preparation for gear and step cone pulley.
- (c) Fitting Exercises Preparation of square fitting and V fitting models.

GROUP B (ELECTRICAL & ELECTRONICS)

III ELECTRICAL ENGINEERING PRACTICE

- 1. Residential house wiring using switches, fuse, indicator, lamp and energy meter.
- 2. Fluorescent lamp wiring.
- 3. Stair case wiring
- 4. Measurement of electrical quantities voltage, current, power & power factor in RLC circuit.
- 5. Measurement of energy using single phase energy meter.
- 6. Measurement of resistance to earth of an electrical equipment.

IV ELECTRONICS ENGINEERING PRACTICE

1. Study of Electronic components and equipments – Resistor, colour coding measurement of AC signal parameter (peak-peak, rms period, frequency) using CR.

2. Study of logic gates AND, OR, EX-OR and NOT.

- 3. Generation of Clock Signal.
- 4. Soldering practice Components Devices and Circuits Using general purpose PCB.
- 5. Measurement of ripple factor of HWR and FWR.

OUTCOMES:

On successful completion of this course, the student will be able to

- fabricate carpentry components and pipe connections including plumbing works.
- use welding equipments to join the structures.
- Carry out the basic machining operations
- Make the models using sheet metal works
- Illustrate on centrifugal pump, Air conditioner, operations of smithy, foundary and fittings
- Carry out basic home electrical works and appliances
- Measure the electrical quantities
- Elaborate on the components, gates, soldering practices.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

1. CIVIL

1. Assorted components for plumbing consisting of metallic pipes, plastic pipes, flexible pipes, couplings, unions, elbows, plugs and other fittings.

2. Carpentry vice (fitted to work bench)	15 Nos.
3. Standard woodworking tools	15 Sets.
4. Models of industrial trusses, door joints, furniture joints	5 each
5. Power Tools: (a) Rotary Hammer	2 Nos
(b) Demolition Hammer	2 Nos
(c) Circular Saw	2 Nos
(d) Planer	2 Nos
(e) Hand Drilling Machine	2 Nos
(f) Jigsaw	2 Nos
MECHANICAL	

 Arc welding transformer with cables and holders 	5 Nos.
2. Welding booth with exhaust facility	5 Nos.
3. Welding accessories like welding shield, chipping hammer,	
wire brush, etc.	5 Sets.
4. Oxygen and acetylene gas cylinders, blow pipe and other	
welding outfit.	2 Nos.

16

TOTAL: 60 PERIODS

15 Sets.

5. Centre lathe	2 Nos.
6. Hearth furnace, anvil and smithy tools	2 Sets.
7. Moulding table, foundry tools	2 Sets.
8. Power Tool: Angle Grinder	2 Nos
9. Study-purpose items: centrifugal pump, air-conditioner	One each.
ELECTRICAL	
1. Assorted electrical components for house wiring	15 Sets
2. Electrical measuring instruments	10 Sets
3. Study purpose items: Iron box, fan and regulator, emergency lamp	1 each
4. Megger (250V/500V)	1 No.
5. Power Tools: (a) Range Finder	2 Nos
(b) Digital Live-wire detector	2 Nos

2. ELECTRONICS

1. Soldering guns	10 Nos.
2. Assorted electronic components for making circuits	50 Nos.
3. Small PCBs	10 Nos.
4. Multimeters	10 Nos.
5. Study purpose items: Telephone, FM radio, low-voltage power	

supply

BE8261BASIC ELECTRICAL, ELECTRONICS AND INSTRUMENTATIONL T P C
ENGINEERING LABORATORY0 0 4 2

OBJECTIVE:

• To train the students in performing various tests on electrical drives, sensors and circuits.

LIST OF EXPERIMENTS:

- 1. Load test on separately excited DC generator
- 2. Load test on Single phase Transformer
- 3. Load test on Induction motor
- 4. Verification of Circuit Laws
- 5. Verification of Circuit Theorems
- 6. Measurement of three phase power
- 7. Load test on DC shunt motor.
- 8. Diode based application circuits
- 9. Transistor based application circuits
- 10. Study of CRO and measurement of AC signals
- 11. Characteristics of LVDT
- 12. Calibration of Rotometer
- 13. RTD and Thermistor

Minimum of 10 Experiments to be carried out :-

TOTAL: 60 PERIODS

OUTCOMES:

- Ability to determine the speed characteristic of different electrical machines
- Ability to design simple circuits involving diodes and transistors
- Ability to use operational amplifiers

1. LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS		
S.No.	NAME OF THE EQUIPMENT	Qty.
1	D. C. Motor Generator Set	2
2	D.C. Shunt Motor	2
3	Single Phase Transformer	2
4	Single Phase Induction Motor	2
5	Ammeter A.C and D.C	20
6	Voltmeters A.C and D.C	20
7.	Watt meters LPF and UPF	4
8.	Resistors & Breadboards	-
9.	Cathode Ray Oscilloscopes	4
10.	Dual Regulated power supplies	6
11.	A.C. Signal Generators	4
12.	Transistors (BJT, JFET)	-

MA8353 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS L T P C 4 0 0 4

OBJECTIVES:

- To introduce the basic concepts of PDE for solving standard partial differential equations.
- To introduce Fourier series analysis which is central to many applications in engineering apart from its use in solving boundary value problems.
- To acquaint the student with Fourier series techniques in solving heat flow problems used in various situations.
- To acquaint the student with Fourier transform techniques used in wide variety of situations.
- To introduce the effective mathematical tools for the solutions of partial differential equations that model several physical processes and to develop Z transform techniques for discrete time systems.

UNIT I PARTIAL DIFFERENTIAL EQUATIONS

Formation of partial differential equations – Singular integrals - Solutions of standard types of first order partial differential equations - Lagrange's linear equation - Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and non-homogeneous types.

UNIT II FOURIER SERIES

Dirichlet's conditions – General Fourier series – Odd and even functions – Half range sine series – Half range cosine series – Complex form of Fourier series – Parseval's identity – Harmonic analysis.

UNIT III APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS

Classification of PDE – Method of separation of variables - Fourier Series Solutions of one dimensional wave equation – One dimensional equation of heat conduction – Steady state solution of two dimensional equation of heat conduction.

12

12

- Understand the mathematical principles on transforms and partial differential equations would
- Use the effective mathematical tools for the solutions of partial differential equations by using Z transform techniques for discrete time systems.

TEXT BOOKS :

- 1. Grewal B.S., "Higher Engineering Mathematics", 43rd Edition, Khanna Publishers, New Delhi, 2014.
- 2. Narayanan S., Manicavachagom Pillay.T.K and Ramanaiah.G "Advanced Mathematics for Engineering Students", Vol. II & III, S.Viswanathan Publishers Pvt. Ltd, Chennai, 1998.

REFERENCES:

- 1. B.V Ramana.., "Higher Engineering Mathematics", McGraw Hill Education Pvt. Ltd, New Delhi, 2016.
- 2. Erwin Kreyszig, "Advanced Engineering Mathematics ", 10th Edition, John Wiley, India, 2016.
- 3. G. James, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2007.
- 4. L.C Andrews, L.C and Shivamoggi, B, "Integral Transforms for Engineers" SPIE Press, 1999.
- 5. N.P. Bali. and Manish Goyal, "A Textbook of Engineering Mathematics", 9th Edition, Laxmi Publications Pvt. Ltd, 2014.
- 6. R.C. Wylie, and Barrett, L.C., "Advanced Engineering Mathematics "Tata McGraw Hill Education Pvt. Ltd, 6th Edition, New Delhi, 2012.

ENGINEERING THERMODYNAMICS ME8391 LTPC 3 2 0 4

OBJECTIVE:

To familiarize the students to understand the fundamentals of thermodynamics and to perform thermal analysis on their behavior and performance.

(Use of Standard and approved Steam Table, Mollier Chart, Compressibility Chart and Psychrometric Chart permitted)

UNIT IV FOURIER TRANSFORMS

Statement of Fourier integral theorem - Fourier transform pair - Fourier sine and cosine transforms – Properties – Transforms of simple functions – Convolution theorem – Parseval's identity.

UNIT V Z - TRANSFORMS AND DIFFERENCE EQUATIONS

Z-transforms - Elementary properties - Inverse Z-transform (using partial fraction and residues) -Initial and final value theorems - Convolution theorem - Formation of difference equations - Solution of difference equations using Z - transform.

OUTCOMES:

Upon successful completion of the course, students should be able to:

- Understand how to solve the given standard partial differential equations.
- Solve differential equations using Fourier series analysis which plays a vital role in engineering applications.
- Appreciate the physical significance of Fourier series techniques in solving one and two dimensional heat flow problems and one dimensional wave equations.
- provide them the ability to formulate and solve some of the physical problems of engineering.

12

TOTAL: 60 PERIODS
UNIT I BASIC CONCEPTS AND FIRST LAW

Basic concepts - concept of continuum, comparison of microscopic and macroscopic approach. Path and point functions. Intensive and extensive, total and specific quantities. System and their types. Thermodynamic Equilibrium State, path and process. Quasi-static, reversible and irreversible processes. Heat and work transfer, definition and comparison, sign convention. Displacement work and other modes of work .P-V diagram. Zeroth law of thermodynamics – concept of temperature and thermal equilibrium– relationship between temperature scales –new temperature scales. First law of thermodynamics –application to closed and open systems – steady and unsteady flow processes.

UNIT II SECOND LAW AND AVAILABILITY ANALYSIS

Heat Reservoir, source and sink. Heat Engine, Refrigerator, Heat pump. Statements of second law and its corollaries. Carnot cycle Reversed Carnot cycle, Performance. Clausius inequality. Concept of entropy, T-s diagram, Tds Equations, entropy change for - pure substance, ideal gases - different processes, principle of increase in entropy. Applications of II Law. High and low grade energy. Available and non-available energy of a source and finite body. Energy and irreversibility. Expressions for the energy of a closed system and open systems. Energy balance and entropy generation. Irreversibility. I and II law Efficiency.

UNIT III PROPERTIES OF PURE SUBSTANCE AND STEAM POWER CYCLE 9+6 Formation of steam and its thermodynamic properties pay prT Tay Tas has diagrams pay

Formation of steam and its thermodynamic properties, p-v, p-T, T-v, T-s, h-s diagrams. p-v-T surface. Use of Steam Table and Mollier Chart. Determination of dryness fraction. Application of I and II law for pure substances. Ideal and actual Rankine cycles, Cycle Improvement Methods - Reheat and Regenerative cycles, Economiser, preheater, Binary and Combined cycles.

UNIT IV IDEAL AND REAL GASES, THERMODYNAMIC RELATIONS

Properties of Ideal gas- Ideal and real gas comparison- Equations of state for ideal and real gases-Reduced properties. Compressibility factor.Principle of Corresponding states. -Generalised Compressibility Chart and its use-. Maxwell relations, Tds Equations, Difference and ratio of heat capacities, Energy equation, Joule-Thomson Coefficient, Clausius Clapeyron equation, Phase Change Processes. Simple Calculations.

UNIT V GAS MIXTURES AND PSYCHROMETRY

Mole and Mass fraction, Dalton's and Amagat's Law. Properties of gas mixture – Molar mass, gas constant, density, change in internal energy, enthalpy, entropy and Gibbs function. Psychrometric properties, Psychrometric charts. Property calculations of air vapour mixtures by using chart and expressions. Psychrometric process – adiabatic saturation, sensible heating and cooling, humidification, dehumidification, evaporative cooling and adiabatic mixing. Simple Applications

OUTCOMES:

Upon the completion of this course the students will be able to

- CO1 Apply the first law of thermodynamics for simple open and closed systems under steady and unsteady conditions.
- CO2 Apply second law of thermodynamics to open and closed systems and calculate entropy and availability.
- CO3 Apply Rankine cycle to steam power plant and compare few cycle improvement methods
- CO4 Derive simple thermodynamic relations of ideal and real gases
- CO5 Calculate the properties of gas mixtures and moist air and its use in psychometric processes

TEXT BOOKS :

- 1. R.K.Rajput, "A Text Book Of Engineering Thermodynamics ",Fifth Edition,2017.
- 2. Yunus a. Cengel & michael a. Boles, "Thermodynamics", 8th edition 2015.

9+6

9 + 6

9+6

TOTAL: 75 PERIODS

9+6

REFERENCES:

- 1. Arora C.P, "Thermodynamics", Tata McGraw-Hill, New Delhi, 2003.
- 2. Borgnakke & Sonnatag, "Fundamental of Thermodynamics", 8th Edition, 2016.
- 3. Chattopadhyay, P, "Engineering Thermodynamics", Oxford University Press, 2016.
- 4. Michael J. Moran, Howard N. Shapiro, "Fundamentals of Engineering Thermodynamics", 8th Edition.
- 5. Nag.P.K., "Engineering Thermodynamics", 5th Edition, Tata McGraw-Hill, New Delhi, 2013.

CE8394

FLUID MECHANICS AND MACHINERY

LTPC 4004

OBJECTIVES

- The properties of fluids and concept of control volume are studied
- The applications of the conservation laws to flow through pipes are studied.
- To understand the importance of dimensional analysis
- To understand the importance of various types of flow in pumps.
- To understand the importance of various types of flow in turbines. •

FLUID PROPERTIES AND FLOW CHARACTERISTICS UNIT I

Units and dimensions- Properties of fluids- mass density, specific weight, specific volume, specific gravity, viscosity, compressibility, vapor pressure, surface tension and capillarity. Flow characteristics - concept of control volume - application of continuity equation, energy equation and momentum equation.

UNIT II FLOW THROUGH CIRCULAR CONDUITS

Hydraulic and energy gradient - Laminar flow through circular conduits and circular annuli-Boundary layer concepts – types of boundary layer thickness – Darcy Weisbach equation –friction factor- Moody diagram- commercial pipes- minor losses – Flow through pipes in series and parallel.

UNIT III DIMENSIONAL ANALYSIS

Need for dimensional analysis - methods of dimensional analysis - Similitude -types of similitude -Dimensionless parameters- application of dimensionless parameters – Model analysis.

UNIT IV PUMPS

Impact of jets - Euler's equation - Theory of roto-dynamic machines - various efficiencies- velocity components at entry and exit of the rotor-velocity triangles - Centrifugal pumps- working principle - work done by the impeller - performance curves - Reciprocating pump- working principle - Rotary pumps –classification.

UNIT V **TURBINES**

Classification of turbines – heads and efficiencies – velocity triangles. Axial, radial and mixed flow turbines. Pelton wheel, Francis turbine and Kaplan turbines- working principles - work done by water on the runner - draft tube. Specific speed - unit quantities - performance curves for turbines - governing of turbines.

TOTAL: 60 PERIODS

12

12

12

12

OUTCOMES:

Upon completion of this course, the students will be able to

- Apply mathematical knowledge to predict the properties and characteristics of a fluid.
- Can analyse and calculate major and minor losses associated with pipe flow in piping networks.
- Can mathematically predict the nature of physical quantities
- Can critically analyse the performance of pumps
- Can critically analyse the performance of turbines.

TEXT BOOK:

1. Modi P.N. and Seth, S.M. "Hydraulics and Fluid Mechanics", Standard Book House, New Delhi 2013.

REFERENCES:

- 1. Graebel. W.P, "Engineering Fluid Mechanics", Taylor & Francis, Indian Reprint, 2011
- 2. Kumar K. L., "Engineering Fluid Mechanics", Eurasia Publishing House(p) Ltd., New Delhi 2016
- 3. Robert W.Fox, Alan T. McDonald, Philip J.Pritchard, "Fluid Mechanics and Machinery", 2011.
- 4. Streeter, V. L. and Wylie E. B., "Fluid Mechanics", McGraw Hill Publishing Co. 2010

MANUFACTURING TECHNOLOGY – I	LT PC
	3003

OBJECTIVE:

ME8351

• To introduce the concepts of basic manufacturing processes and fabrication techniques, such as metal casting, metal joining, metal forming and manufacture of plastic components.

UNIT I METAL CASTING PROCESSES

Sand Casting : Sand Mould – Type of patterns - Pattern Materials – Pattern allowances –Moulding sand Properties and testing – Cores –Types and applications – Moulding machines– Types and applications; Melting furnaces : Blast and Cupola Furnaces; Principle of special casting processes : Shell - investment – Ceramic mould – Pressure die casting - Centrifugal Casting - CO2 process – Stir casting; Defects in Sand casting

UNIT II JOINING PROCESSES

Operating principle, basic equipment, merits and applications of: Fusion welding processes: Gas welding - Types – Flame characteristics; Manual metal arc welding – Gas Tungsten arc welding - Gas metal arc welding – Submerged arc welding – Electro slag welding; Operating principle and applications of: Resistance welding - Plasma arc welding – Thermit welding – Electron beam welding – Friction welding and Friction Stir Welding; Brazing and soldering; Weld defects: types, causes and cure.

UNIT III METAL FORMING PROCESSES

Hot working and cold working of metals – Forging processes – Open, impression and closed die forging – forging operations. Rolling of metals– Types of Rolling – Flat strip rolling – shape rolling operations – Defects in rolled parts. Principle of rod and wire drawing – Tube drawing – Principles of Extrusion – Types – Hot and Cold extrusion.

9

9

UNIT IV SHEET METAL PROCESSES

Sheet metal characteristics – shearing, bending and drawing operations – Stretch forming operations – Formability of sheet metal – Test methods –special forming processes-Working principle and applications – Hydro forming – Rubber pad forming – Metal spinning– Introduction of Explosive forming, magnetic pulse forming, peen forming, Super plastic forming – Micro forming

UNIT V MANUFACTURE OF PLASTIC COMPONENTS

Types and characteristics of plastics – Moulding of thermoplastics – working principles and typical applications – injection moulding – Plunger and screw machines – Compression moulding, Transfer Moulding – Typical industrial applications – introduction to blow moulding –Rotational moulding – Film blowing – Extrusion – Thermoforming – Bonding of Thermoplastics.

OUTCOMES:

- CO1 Explain different metal casting processes, associated defects, merits and demerits
- CO2 Compare different metal joining processes.
- CO3 Summarize various hot working and cold working methods of metals.
- CO4 Explain various sheet metal making processes.
- CO5 Distinguish various methods of manufacturing plastic components.

TEXT BOOKS:

- 1. Hajra Chouldhary S.K and Hajra Choudhury. AK., "Elements of workshop Technology", volume I and II, Media promoters and Publishers Private Limited, Mumbai, 2008
- 2. Kalpakjian. S, "Manufacturing Engineering and Technology", Pearson Education India Edition, 2013

REFERENCES:

- 1. Gowri P. Hariharan, A.Suresh Babu, "Manufacturing Technology I", Pearson Education, 2008
- 2. Paul Degarma E, Black J.T and Ronald A. Kosher, "Materials and Processes, in Manufacturing" Eight Edition, Prentice Hall of India, 1997.
- 3. Rao, P.N. "Manufacturing Technology Foundry, Forming and Welding", 4th Edition, TMH-2013
- 4. Roy. A. Lindberg, "Processes and Materials of Manufacture", PHI / Pearson education, 2006
- 5. Sharma, P.C., "A Text book of production Technology", S.Chand and Co. Ltd., 2014.

EE8353

ELECTRICAL DRIVES AND CONTROLS

L T P C 3 0 0 3

OBJECTIVES:

- To understand the basic concepts of different types of electrical machines and their performance.
- To study the different methods of starting D.C motors and induction motors.
- To study the conventional and solid-state drives

UNIT I INTRODUCTION

Basic Elements – Types of Electric Drives – factors influencing the choice of electrical drives – heating and cooling curves – Loading conditions and classes of duty – Selection of power rating for drive motors with regard to thermal overloading and Load variation factors

TOTAL: 45 PERIODS

9

9

UNIT II DRIVE MOTOR CHARACTERISTICS

Mechanical characteristics – Speed-Torque characteristics of various types of load and drive motors – Braking of Electrical motors – DC motors: Shunt, series and compound - single phase and three phase induction motors.

UNIT III STARTING METHODS

Types of D.C Motor starters – Typical control circuits for shunt and series motors – Three phase squirrel cage and slip ring induction motors.

UNIT IV CONVENTIONAL AND SOLID STATE SPEED CONTROL OF D.C. DRIVES 10

Speed control of DC series and shunt motors – Armature and field control, Ward-Leonard control system - Using controlled rectifiers and DC choppers –applications.

UNIT V CONVENTIONAL AND SOLID STATE SPEED CONTROL OF A.C. DRIVES 10

Speed control of three phase induction motor – Voltage control, voltage / frequency control, slip power recovery scheme – Using inverters and AC voltage regulators – applications. TOTAL: 45 PERIODS

OUTCOME:

• Upon Completion of this subject, the students can able to explain different types of electrical machines and their performance

TEXT BOOKS:

- 1. Nagrath .I.J. & Kothari .D.P, "Electrical Machines", Tata McGraw-Hill, 2006
- 2. Vedam Subrahmaniam, "Electric Drives (Concepts and Applications)", Tata McGraw-Hill, 2010

REFERENCES:

- 1. Partab. H., "Art and Science and Utilisation of Electrical Energy", Dhanpat Rai and Sons, 2017
- 2. Pillai.S.K "A First Course on Electric Drives", Wiley Eastern Limited, 2012
- 3. Singh. M.D., K.B.Khanchandani, "Power Electronics", Tata McGraw-Hill, 2006.

ME8361 MANUFACTURING TECHNOLOGY LABORATORY – I LTPC

OBJECTIVE:

 To Study and practice the various operations that can be performed in lathe, shaper, drilling, milling machines etc. and to equip with the practical knowledge required in the core industries.

LIST OF EXPERIMENTS

Machining and Machining time estimations for:

- 1. Taper Turning
- 2. External Thread cutting
- 3. Internal Thread Cutting
- 4. Eccentric Turning
- 5. Knurling
- 6. Square Head Shaping
- 7. Hexagonal Head Shaping
- 8. Fabrication of simple structural shapes using Gas Metal Arc Welding
- 9. Joining of plates and pipes using Gas Metal Arc Welding/ Arc Welding /Submerged arc welding
- 10. Preparation of green sand moulds
- 11 Manufacturing of simple sheet metal components using shearing and bending operations.
- 12. Manufacturing of sheet metal components using metal spinning on a lathe

TOTAL: 60 PERIODS

0 0 4 2

OUTCOMES:

Upon the completion of this course the students will be able to

- CO1 Demonstrate the safety precautions exercised in the mechanical workshop.
- CO2 Make the workpiece as per given shape and size using Lathe.
- CO3 Join two metals using arc welding.
- CO4 Use sheet metal fabrication tools and make simple tray and funnel.
- CO5 Use different moulding tools, patterns and prepare sand moulds.

S. NO.	NAME OF THE EQUIPMENT	Qty.
1	Centre Lathes	7 Nos.
2	Horizontal Milling Machine	1 No
3	Vertical Milling Machine	1 No
4	Shaper	1 No.
5	Arc welding transformer with cables and holders	2 Nos
6	Oxygen and acetylene gas cylinders, blow pipe and other welding outfit	1 No
7	Moulding table, Moulding equipments	2 Nos
8	Sheet metal forming tools and equipments	2 Nos.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

ME8381

OBJECTIVES:

- To make the students understand and interpret drawings of machine components
- To prepare assembly drawings both manually and using standard CAD packages
- To familiarize the students with Indian Standards on drawing practices and standard components
- To gain practical experience in handling 2D drafting and 3D modeling software systems.

UNIT I DRAWING STANDARDS & FITS AND TOLERANCES

Code of practice for Engineering Drawing, BIS specifications – Welding symbols, riveted joints, keys, fasteners – Reference to hand book for the selection of standard components like bolts, nuts, screws, keys etc. - Limits, Fits – Tolerancing of individual dimensions – Specification of Fits – Preparation of production drawings and reading of part and assembly drawings, basic principles of geometric dimensioning & tolerancing.

UNIT II INTRODUCTION TO 2D DRAFTING

- Drawing, Editing, Dimensioning, Layering, Hatching, Block, Array, Detailing, Detailed drawing.
- Bearings Bush bearing, Plummer block
- Valves Safety and non-return valves.

UNIT III 3D GEOMETRIC MODELING AND ASSEMBLY

Sketcher - Datum planes – Protrusion – Holes - Part modeling – Extrusion – Revolve – Sweep – Loft – Blend – Fillet - Pattern – Chamfer - Round - Mirror – Section - Assembly

- Couplings Flange, Universal, Oldham's, Muff, Gear couplings
- Joints Knuckle, Gib & cotter, strap, sleeve & cotter joints
- Engine parts Piston, connecting rod, cross-head (vertical and horizontal), stuffing box, multi-plate clutch
- Miscellaneous machine components Screw jack, machine vice, tail stock, chuck, vane and gear pump

TOTAL:60 PERIODS

Note: 25% of assembly drawings must be done manually and remaining 75% of assembly drawings must be done by using any CAD software. The above tasks can be performed manually and using standard commercial 2D / 3D CAD software

OUTCOMES:

Upon the completion of this course the students will be able to

- CO1 Follow the drawing standards, Fits and Tolerances
- CO2 Re-create part drawings, sectional views and assembly drawings as per standards

TEXT BOOK:

1. Gopalakrishna K.R., "Machine Drawing", 22nd Edition, Subhas Stores Books Corner, Bangalore, 2013

REFERENCES:

- 1. N. D. Bhatt and V.M. Panchal, "Machine Drawing", 48th Edition, Charotar Publishers, 2013
- 2. Junnarkar, N.D., "Machine Drawing", 1st Edition, Pearson Education, 2004
- 3. N. Siddeshwar, P. Kanniah, V.V.S. Sastri, "Machine Drawing", published by Tata Mc GrawHill,2006
- 4. S. Trymbaka Murthy, "A Text Book of Computer Aided Machine Drawing", CBS Publishers, New Delhi, 2007

12

32

EE8361

ELECTRICAL ENGINEERING LABORATORY

L T P C 0 0 4 2

OBJECTIVE:

• To validate the principles studied in theory by performing experiments in the laboratory

LIST OF EXPERIMENTS

- 1. Load test on DC Shunt & DC Series motor
- 2. O.C.C & Load characteristics of DC Shunt and DC Series generator
- 3. Speed control of DC shunt motor (Armature, Field control)
- 4. Load test on single phase transformer
- 5. O.C & S.C Test on a single phase transformer
- 6. Regulation of an alternator by EMF & MMF methods.
- 7. V curves and inverted V curves of synchronous Motor
- 8. Load test on three phase squirrel cage Induction motor
- 9. Speed control of three phase slip ring Induction Motor
- 10. Study of DC & AC Starters

TOTAL: 60 PERIODS

OUTCOME:

• Ability to perform speed characteristic of different electrical machine

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

S.No.	NAME OF THE EQUIPMENT	Qty.
1	DC Shunt motor	2
2	DC Series motor	1
3	DC shunt motor-DC Shunt Generator set	1
4	DC Shunt motor-DC Series Generator set	1
5	Single phase transformer	2
6	Three phase alternator	2
7	Three phase synchronous motor	1
8	Three phase Squirrel cage Induction motor	1
9	Three phase Slip ring Induction motor	1

HS8381

INTERPERSONAL SKILLS/LISTENING & SPEAKING L T

L T P C 0 0 2 1

OBJECTIVES: The Course will enable learners to:

- Equip students with the English language skills required for the successful undertaking of academic studies with primary emphasis on academic speaking and listening skills.
- Provide guidance and practice in basic general and classroom conversation and to engage in specific academic speaking activities.
- improve general and academic listening skills
- Make effective presentations.

UNIT I

Listening as a key skill- its importance- speaking - give personal information - ask for personal information - express ability - enquire about ability - ask for clarification Improving pronunciation - pronunciation basics taking lecture notes - preparing to listen to a lecture - articulate a complete idea as opposed to producing fragmented utterances.

UNIT II

Listen to a process information- give information, as part of a simple explanation - conversation starters: small talk - stressing syllables and speaking clearly - intonation patterns - compare and contrast information and ideas from multiple sources- converse with reasonable accuracy over a wide range of everyday topics.

UNIT III

Lexical chunking for accuracy and fluency- factors influence fluency, deliver a five-minute informal talk - greet - respond to greetings - describe health and symptoms - invite and offer - accept - decline - take leave - listen for and follow the gist- listen for detail

UNIT IV

Being an active listener: giving verbal and non-verbal feedback - participating in a group discussion - summarizing academic readings and lectures conversational speech listening to and participating in conversations - persuade.

UNIT V

Formal and informal talk - listen to follow and respond to explanations, directions and instructions in academic and business contexts - strategies for presentations and interactive communication - group/pair presentations - negotiate disagreement in group work.

TOTAL: 30 PERIODS

OUTCOMES: At the end of the course Learners will be able to:

- Listen and respond appropriately.
- Participate in group discussions
- Make effective presentations
- Participate confidently and appropriately in conversations both formal and informal

TEXT BOOKS:

- 1. Brooks, Margret. Skills for Success. Listening and Speaking. Level 4 Oxford University Press, Oxford: 2011.
- Richards, C. Jack. & David Bholke. Speak Now Level 3. Oxford University Press, Oxford: 2010

REFERENCES

- 1. Bhatnagar, Nitin and MamtaBhatnagar. Communicative English for Engineers and Professionals. Pearson: New Delhi, 2010.
- 2. Hughes, Glyn and Josephine Moate. Practical English Classroom. Oxford University Press: Oxford, 2014.
- 3. Ladousse, Gillian Porter. Role Play. Oxford University Press: Oxford, 2014
- 4. Richards C. Jack. Person to Person (Starter). Oxford University Press: Oxford, 2006.
- 5. Vargo, Mari. Speak Now Level 4. Oxford University Press: Oxford, 2013.

MA8452

STATISTICS AND NUMERICAL METHODS

L T P C 4 0 0 4

OBJECTIVES:

- This course aims at providing the necessary basic concepts of a few statistical and numerical methods and give procedures for solving numerically different kinds of problems occurring in engineering and technology.
- To acquaint the knowledge of testing of hypothesis for small and large samples which plays an important role in real life problems.
- To introduce the basic concepts of solving algebraic and transcendental equations.
- To introduce the numerical techniques of interpolation in various intervals and numerical techniques of differentiation and integration which plays an important role in engineering and technology disciplines.
- To acquaint the knowledge of various techniques and methods of solving ordinary differential equations.

UNIT I TESTING OF HYPOTHESIS

Sampling distributions - Estimation of parameters - Statistical hypothesis - Large sample tests based on Normal distribution for single mean and difference of means -Tests based on t, Chi-square and F distributions for mean, variance and proportion - Contingency table (test for independent) -Goodness of fit.

UNIT II DESIGN OF EXPERIMENTS

One way and two way classifications - Completely randomized design – Randomized block design – Latin square design - 2² factorial design.

UNIT III SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS

Solution of algebraic and transcendental equations - Fixed point iteration method – Newton Raphson method - Solution of linear system of equations - Gauss elimination method – Pivoting - Gauss Jordan method – Iterative methods of Gauss Jacobi and Gauss Seidel - Eigenvalues of a matrix by Power method and Jacobi's method for symmetric matrices.

UNIT IV INTERPOLATION, NUMERICAL DIFFERENTIATION AND NUMERICAL INTEGRATION

Lagrange's and Newton's divided difference interpolations – Newton's forward and backward difference interpolation – Approximation of derivates using interpolation polynomials – Numerical single and double integrations using Trapezoidal and Simpson's 1/3 rules.

UNIT V NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

Single step methods : Taylor's series method - Euler's method - Modified Euler's method - Fourth order Runge-Kutta method for solving first order equations - Multi step methods : Milne's and Adams - Bash forth predictor corrector methods for solving first order equations.

TOTAL: 60 PERIODS

OUTCOMES:

Upon successful completion of the course, students will be able to:

- Apply the concept of testing of hypothesis for small and large samples in real life problems.
- Apply the basic concepts of classifications of design of experiments in the field of agriculture.
- Appreciate the numerical techniques of interpolation in various intervals and apply the numerical techniques of differentiation and integration for engineering problems.
- Understand the knowledge of various techniques and methods for solving first and second order ordinary differential equations.
- Solve the partial and ordinary differential equations with initial and boundary conditions by using certain techniques with engineering applications

12

12

12

12

TEXT BOOKS :

- 1. Grewal. B.S. and Grewal. J.S., "Numerical Methods in Engineering and Science ", 10th Edition, Khanna Publishers, New Delhi, 2015.
- 2. Johnson, R.A., Miller, I and Freund J., "Miller and Freund's Probability and Statistics for Engineers", Pearson Education, Asia, 8th Edition, 2015.

REFERENCES:

- 1. Burden, R.L and Faires, J.D, "Numerical Analysis", 9th Edition, Cengage Learning, 2016.
- 2. Devore. J.L., "Probability and Statistics for Engineering and the Sciences", Cengage Learning, New Delhi, 8th Edition, 2014.
- 3. Gerald. C.F. and Wheatley. P.O. "Applied Numerical Analysis" Pearson Education, Asia, New Delhi, 2006.
- 4. Spiegel. M.R., Schiller. J. and Srinivasan. R.A., "Schaum's Outlines on Probability and Statistics ", Tata McGraw Hill Edition, 2004.
- 5. Walpole. R.E., Myers. R.H., Myers. S.L. and Ye. K., "Probability and Statistics for Engineers and Scientists", 8th Edition, Pearson Education, Asia, 2007.

ME8492	KINEMATICS OF MACHINERY	L	Т	Ρ	С
		3	0	0	3

OBJECTIVES:

- To understand the basic components and layout of linkages in the assembly of a system machine.
- To understand the principles in analyzing the assembly with respect to the displacement, velocity, and acceleration at any point in a link of a mechanism.
- To understand the motion resulting from a specified set of linkages, design few linkage mechanisms and cam mechanisms for specified output motions.
- To understand the basic concepts of toothed gearing and kinematics of gear trains and the effects of friction in motion transmission and in machine components.

UNIT I BASICS OF MECHANISMS

Classification of mechanisms – Basic kinematic concepts and definitions – Degree of freedom, Mobility – Kutzbach criterion, Gruebler's criterion – Grashof's Law – Kinematic inversions of four-bar chain and slider crank chains – Limit positions – Mechanical advantage – Transmission Angle – Description of some common mechanisms – Quick return mechanisms, Straight line generators, Universal Joint – rocker mechanisms.

UNIT II KINEMATICS OF LINKAGE MECHANISMS

Displacement, velocity and acceleration analysis of simple mechanisms – Graphical method– Velocity and acceleration polygons – Velocity analysis using instantaneous centres – kinematic analysis of simple mechanisms – Coincident points – Coriolis component of Acceleration – Introduction to linkage synthesis problem.

UNIT III KINEMATICS OF CAM MECHANISMS

Classification of cams and followers – Terminology and definitions – Displacement diagrams – Uniform velocity, parabolic, simple harmonic and cycloidal motions – Derivatives of follower motions – Layout of plate cam profiles – Specified contour cams – Circular arc and tangent cams – Pressure angle and undercutting – sizing of cams.

9

9

UNIT IV GEARS AND GEAR TRAINS

Law of toothed gearing – Involutes and cycloidal tooth profiles –Spur Gear terminology and definitions –Gear tooth action – contact ratio – Interference and undercutting. Helical, Bevel, Worm, Rack and Pinion gears [Basics only]. Gear trains – Speed ratio, train value – Parallel axis gear trains – Epicyclic Gear Trains.

UNIT V FRICTION IN MACHINE ELEMENTS

Surface contacts – Sliding and Rolling friction – Friction drives – Friction in screw threads – Bearings and lubrication – Friction clutches – Belt and rope drives – Friction in brakes- Band and Block brakes.

OUTCOMES:

Upon the completion of this course the students will be able to

- CO1 Discuss the basics of mechanism
- CO2 Calculate velocity and acceleration in simple mechanisms
- CO3 Develop CAM profiles
- CO4 Solve problems on gears and gear trains
- CO5 Examine friction in machine elements

TEXT BOOKS:

- 1. F.B. Sayyad, "Kinematics of Machinery", MacMillan Publishers Pvt Ltd., Tech-max Educational resources, 2011.
- 2. Rattan, S.S, "Theory of Machines", 4th Edition, Tata McGraw-Hill, 2014.
- 3. Uicker, J.J., Pennock G.R and Shigley, J.E., "Theory of Machines and Mechanisms", 4 Edition, Oxford University Press, 2014.

REFERENCES:

- 1. Allen S. Hall Jr., "Kinematics and Linkage Design", Prentice Hall, 1961
- 2. Cleghorn. W. L, "Mechanisms of Machines", Oxford University Press, 2014
- 3. Ghosh. A and Mallick, A.K., "Theory of Mechanisms and Machines", 3rd Edition Affiliated East-West Pvt. Ltd., New Delhi, 2006.
- 4. John Hannah and Stephens R.C., "Mechanics of Machines", Viva Low-Prices Student Edition, 1999.
- 5. Thomas Bevan, "Theory of Machines", 3rd Edition, CBS Publishers and Distributors, 2005.

MANUFACTURING TECHNOLOGY – II	L	Т	Ρ	С
	3	0	0	3

OBJECTIVES:

ME8451

- To understand the concept and basic mechanics of metal cutting, working of standard machine tools such as lathe, shaping and allied machines, milling, drilling and allied machines, grinding and allied machines and broaching.
- To understand the basic concepts of Computer Numerical Control (CNC) of machine tools and CNC Programming

UNIT I THEORY OF METAL CUTTING

Mechanics of chip formation, single point cutting tool, forces in machining, Types of chip, cutting tools– nomenclature, orthogonal metal cutting, thermal aspects, cutting tool materials, tool wear, tool life, surface finish, cutting fluids and Machinability.

9

TOTAL: 45 PERIODS

UNIT II **TURNING MACHINES**

Centre lathe, constructional features, specification, operations - taper turning methods, thread cutting methods, special attachments, machining time and power estimation. Capstan and turret lathes- tool layout - automatic lathes: semi automatic - single spindle : Swiss type, automatic screw type - multi spindle:

UNIT III SHAPER, MILLING AND GEAR CUTTING MACHINES

Shaper - Types of operations. Drilling ,reaming, boring, Tapping. Milling operations-types of milling cutter. Gear cutting - forming and generation principle and construction of gear milling ,hobbing and gear shaping processes -finishing of gears.

UNIT IV ABRASIVE PROCESS AND BROACHING

Abrasive processes: grinding wheel - specifications and selection, types of grinding processcylindrical grinding, surface grinding, centreless grinding and internal grinding-Typical applications - concepts of surface integrity, broaching machines: broach construction - push, pull, surface and continuous broaching machines

UNIT V **CNC MACHINING**

Numerical Control (NC) machine tools - CNC types, constructional details, special features, machining centre, part programming fundamentals CNC - manual part programming micromachining – wafer machining.

OUTCOMES:

Upon the completion of this course the students will be able to

- CO1 Explain the mechanism of material removal processes.
- CO2 Describe the constructional and operational features of centre lathe and other special purpose lathes.
- CO3 Describe the constructional and operational features of shaper, planner, milling, drilling, sawing and broaching machines.
- CO4 Explain the types of grinding and other super finishing processes apart from gear manufacturing processes.
- CO5 Summarize numerical control of machine tools and write a part program.

TEXT BOOKS:

- 1. Hajra Choudhury, "Elements of Workshop Technology", Vol.II., Media Promoters 2014
- 2. Rao. P.N "Manufacturing Technology Metal Cutting and Machine Tools", 3rd Edition, Tata McGraw-Hill, New Delhi, 2013.

REFERENCES:

- 1. Richerd R Kibbe, John E. Neely, Roland O. Merges and Warren J.White "Machine Tool Practices". Prentice Hall of India. 1998
- 2. Geofrey Boothroyd, "Fundamentals of Metal Machining and Machine Tools", Mc Graw Hill, 1984
- 3. HMT, "Production Technology", Tata McGraw Hill, 1998.
- 4. Roy. A.Lindberg, "Process and Materials of Manufacture," Fourth Edition, PHI/Pearson Education 2006.

9

9

TOTAL: 45 PERIODS

OBJECTIVE:

 To impart knowledge on the structure, properties, treatment, testing and applications of metals and non-metallic materials so as to identify and select suitable materials for various engineering applications.

UNIT I ALLOYS AND PHASE DIAGRAMS

Constitution of alloys – Solid solutions, substitutional and interstitial – phase diagrams, Isomorphous, eutectic, eutectoid, peritectic, and peritectoid reactions, Iron – carbon equilibrium diagram. Classification of steel and cast Iron microstructure, properties and application.

UNIT II HEAT TREATMENT

Definition – Full annealing, stress relief, recrystallisation and spheroidising – normalising, hardening and Tempering of steel. Isothermal transformation diagrams – cooling curves superimposed on I.T. diagram CCR – Hardenability, Jominy end quench test - Austempering, martempering – case hardening, carburizing, Nitriding, cyaniding, carbonitriding – Flame and Induction hardening – Vacuum and Plasma hardening.

UNIT III FERROUS AND NON-FERROUS METALS

Effect of alloying additions on steel- and stabilisers– stainless and tool steels – HSLA, Maraging steels – Cast Iron - Grey, white, malleable, spheroidal – alloy cast irons, Copper and copper alloys – Brass, Bronze and Cupronickel – Aluminium and Al-Cu – precipitation strengthening treatment – Bearing alloys, Mg-alloys, Ni-based super alloys and Titanium alloys.

UNIT IV NON-METALLIC MATERIALS

Polymers – types of polymer, commodity and engineering polymers – Properties and applications of various thermosetting and thermoplastic polymers (PP, PS, PVC, PMMA, PET, PC, PA, ABS, PI, PAI, PPO, PPS, PEEK, PTFE, Polymers – Urea and Phenol formaldehydes)- Engineering Ceramics – Properties and applications of Al₂O₃, SiC, Si₃N₄, PSZ and SIALON –Composites-Classifications- Metal Matrix and FRP - Applications of Composites.

UNIT V MECHANICAL PROPERTIES AND DEFORMATION MECHANISMS

Mechanisms of plastic deformation, slip and twinning – Types of fracture – Testing of materials under tension, compression and shear loads – Hardness tests (Brinell, Vickers and Rockwell), hardness tests, Impact test Izod and charpy, fatigue and creep failure mechanisms.

TOTAL: 45 PERIODS

OUTCOMES

Upon the completion of this course the students will be able to

- CO1 Explain alloys and phase diagram, Iron-Iron carbon diagram and steel classification.
- CO2 Explain isothermal transformation, continuous cooling diagrams and different heat treatment processes.
- CO3 Clarify the effect of alloying elements on ferrous and non-ferrous metals
- CO4 Summarize the properties and applications of non metallic materials.
- CO5 Explain the testing of mechanical properties. .

TEXT BOOKS:

- 1. Avner, S.H., "Introduction to Physical Metallurgy", McGraw Hill Book Company, 1997.
- 2. Williams D Callister, "Material Science and Engineering" Wiley India Pvt Ltd, Revised Indian Edition 2014

9

9

9

9

REFERENCES:

- 1. Kenneth G.Budinski and Michael K. Budinski, "Engineering Materials", Prentice Hall of India Private Limited, 2010.
- 2. Raghavan.V, "Materials Science and Engineering", Prentice Hall of India Pvt. Ltd., 2015.
- 3. U.C.Jindal : Material Science and Metallurgy, "Engineering Materials and Metallurgy", First Edition, Dorling Kindersley, 2012
- 4. Upadhyay. G.S. and Anish Upadhyay, "Materials Science and Engineering", Viva Books Pvt. Ltd., New Delhi, 2006.

CE8395 STRENGTH OF MATERIALS FOR MECHANICAL L T P C ENGINEERS

3 0 0 3

OBJECTIVES:

- To understand the concepts of stress, strain, principal stresses and principal planes.
- To study the concept of shearing force and bending moment due to external loads in determinate beams and their effect on stresses.
- To determine stresses and deformation in circular shafts and helical spring due to torsion.
- To compute slopes and deflections in determinate beams by various methods.
- To study the stresses and deformations induced in thin and thick shells.

UNIT I STRESS, STRAIN AND DEFORMATION OF SOLIDS

Rigid bodies and deformable solids – Tension, Compression and Shear Stresses – Deformation of simple and compound bars – Thermal stresses – Elastic constants – Volumetric strains –Stresses on inclined planes – principal stresses and principal planes – Mohr's circle of stress.

UNIT II TRANSVERSE LOADING ON BEAMS AND STRESSES IN BEAM

Beams – types transverse loading on beams – Shear force and bending moment in beams – Cantilevers – Simply supported beams and over – hanging beams. Theory of simple bending– bending stress distribution – Load carrying capacity – Proportioning of sections – Flitched beams – Shear stress distribution.

UNIT III TORSION

Torsion formulation stresses and deformation in circular and hollows shafts – Stepped shafts– Deflection in shafts fixed at the both ends – Stresses in helical springs – Deflection of helical springs, carriage springs.

UNIT IV DEFLECTION OF BEAMS

Double Integration method – Macaulay's method – Area moment method for computation of slopes and deflections in beams - Conjugate beam and strain energy – Maxwell's reciprocal theorems.

UNIT V THIN CYLINDERS, SPHERES AND THICK CYLINDERS

Stresses in thin cylindrical shell due to internal pressure circumferential and longitudinal stresses and deformation in thin and thick cylinders – spherical shells subjected to internal pressure – Deformation in spherical shells – Lame's theorem.

TOTAL: 45 PERIODS

9

9

9

9

OUTCOMES

Students will be able to

- Understand the concepts of stress and strain in simple and compound bars, the importance of principal stresses and principal planes.
- Understand the load transferring mechanism in beams and stress distribution due to shearing force and bending moment.
- Apply basic equation of simple torsion in designing of shafts and helical spring
- Calculate the slope and deflection in beams using different methods.
- Analyze and design thin and thick shells for the applied internal and external pressures.

TEXT BOOKS:

- 1. Bansal, R.K., "Strength of Materials", Laxmi Publications (P) Ltd., 2016
- 2. Jindal U.C., "Strength of Materials", Asian Books Pvt. Ltd., New Delhi, 2009

REFERENCES:

- 1. Egor. P.Popov "Engineering Mechanics of Solids" Prentice Hall of India, New Delhi, 2002
- 2. Ferdinand P. Been, Russell Johnson, J.r. and John J. Dewole "Mechanics of Materials", Tata McGraw Hill Publishing 'co. Ltd., New Delhi, 2005.
- 3. Hibbeler, R.C., "Mechanics of Materials", Pearson Education, Low Price Edition, 2013
- 4. Subramanian R., "Strength of Materials", Oxford University Press, Oxford Higher Education Series, 2010.

ME8493	THERMAL ENGINEERING - I	L	Т	Ρ	С
		3	0	0	3

OBJECTIVES:

- To integrate the concepts, laws and methodologies from the first course in thermodynamics into analysis of cyclic processes
- To apply the thermodynamic concepts into various thermal application like IC engines, Steam.
- Turbines, Compressors and Refrigeration and Air conditioning systems

(Use of standard refrigerant property data book, Steam Tables, Mollier diagram and Psychrometric chart permitted)

UNIT I GAS AND STEAM POWER CYCLES

Air Standard Cycles - Otto, Diesel, Dual, Brayton – Cycle Analysis, Performance and Comparison - Rankine, reheat and regenerative cycle.

UNIT II **RECIPROCATING AIR COMPRESSOR**

Classification and comparison, working principle, work of compression - with and without clearance, Volumetric efficiency, Isothermal efficiency and Isentropic efficiency. Multistage air compressor with Intercooling. Working principle and comparison of Rotary compressors with reciprocating air compressors.

UNIT III INTERNAL COMBUSTION ENGINES AND COMBUSTION

IC engine - Classification, working, components and their functions, Ideal and actual ; Valve and port timing diagrams, p-v diagrams- two stroke & four stroke, and SI & CI engines - comparison. Geometric, operating, and performance comparison of SI and CI engines. Desirable properties and gualities of fuels. Air-fuel ratio calculation - lean and rich mixtures. Combustion in SI & CI Engines – Knocking – phenomena and control.

9

9

UNIT IV INTERNAL COMBUSTION ENGINE PERFORMANCE AND SYSTEMS

Performance parameters and calculations. Morse and Heat Balance tests. Multipoint Fuel Injection system and Common Rail Direct Injection systems. Ignition systems - Magneto, Battery and Electronic. Lubrication and Cooling systems. Concepts of Supercharging and Turbocharging -Emission Norms.

UNIT V **GAS TURBINES**

9

TOTAL:45 PERIODS

Gas turbine cycle analysis - open and closed cycle. Performance and its improvement -Regenerative, Intercooled, Reheated cycles and their combinations. Materials for Turbines.

OUTCOMES:

Upon the completion of this course the students will be able to

- CO1 Apply thermodynamic concepts to different air standard cycles and solve problems.
- CO2 Solve problems in single stage and multistage air compressors
- CO3 Explain the functioning and features of IC engines, components and auxiliaries.
- CO4 Calculate performance parameters of IC Engines.
- CO5 Explain the flow in Gas turbines and solve problems.

TEXT BOOKS:

- 1. Kothandaraman.C.P., Domkundwar. S,Domkundwar. A.V., "A course in thermal Engineering", Fifth Edition, "Dhanpat Rai & sons, 2016
- 2. Rajput. R. K., "Thermal Engineering" S.Chand Publishers, 2017

REFERENCES:

- 1. Arora.C.P, "Refrigeration and Air Conditioning," Tata McGraw-Hill Publishers 2008
- 2. Ganesan V.." Internal Combustion Engines", Third Edition, Tata Mcgraw-Hill 2012
- Ramalingam. K.K., "Thermal Engineering", SCITECH Publications (India) Pvt. Ltd., 2009.
 Rudramoorthy, R, "Thermal Engineering ", Tata McGraw-Hill, New Delhi, 2003
- 5. Sarkar, B.K,"Thermal Engineering" Tata McGraw-Hill Publishers, 2007

MANUFACTURING TECHNOLOGY LABORATORY - II ME8462 С Т Ρ L

0 0 2

OBJECTIVE:

• To Study and acquire knowledge on various basic machining operations in special purpose machines and its applications in real life manufacture of components in the industry

LIST OF EXPERIMENTS:

- 1. Contour milling using vertical milling machine
- 2. Spur gear cutting in milling machine
- 3. Helical Gear Cutting in milling machine
- 4. Gear generation in hobbing machine
- 5. Gear generation in gear shaping machine
- 6. Plain Surface grinding
- 7. Cylindrical grinding
- 8. Tool angle grinding with tool and Cutter Grinder
- 9. Measurement of cutting forces in Milling / Turning Process
- 10. CNC Part Programming

OUTCOMES:

Upon the completion of this course the students will be able to

- use different machine tools to manufacturing gears CO1
- CO2 Ability to use different machine tools to manufacturing gears.
- CO3 Ability to use different machine tools for finishing operations
- CO4 Ability to manufacture tools using cutter grinder
- CO5 Develop CNC part programming

TOTAL: 60 PERIODS

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS			
S.No.	NAME OF THE EQUIPMENT	Qty.	
1	Turret and Capstan Lathes	1 No each	
2	Horizontal Milling Machine	2 No	
3	Vertical Milling Machine	1 No	
4	Surface Grinding Machine	1 No.	
5	Cylinderical Grinding Machine	1 No.	
6	Radial Drilling Machine	1 No.	
7	lathe Tool Dynamometer	1 No	
8	Milling Tool Dynamometer	1 No	
9	Gear Hobbing Machine	1 No	
10	Tool Makers Microscope	1 No	
11	CNC Lathe	1 No	
12	CNC Milling machine	1 No	
13	Gear Shaping machine	1 No	
14	Centerless grinding machine	1 No	
15	Tool and cutter grinder	1 No	

STRENGTH OF MATERIALS AND FLUID MECHANICS С CE8381 L Т Ρ AND MACHINERY LABORATORY 0 0 4 2

OBJECTIVES:

- To study the mechanical properties of materials when subjected to different types of loading.
- To verify the principles studied in Fluid Mechanics theory by performing experiments in lab.

STRENGTH OF MATERIALS LIST OF EXPERIMENTS

- 1. Tension test on a mild steel rod
- 2. Double shear test on Mild steel and Aluminium rods
- 3. Torsion test on mild steel rod
- 4. Impact test on metal specimen
- 5. Hardness test on metals Brinnell and Rockwell Hardness Number
- 6. Deflection test on beams
- 7. Compression test on helical springs
- 8. Strain Measurement using Rosette strain gauge
- 9. Effect of hardening- Improvement in hardness and impact resistance of steels.
- 10. Tempering- Improvement Mechanical properties Comparison

- (i) Unhardened specimen
- (ii) Quenched Specimen and
- (iii) Quenched and tempered specimen.
- 11. Microscopic Examination of
 - (i) Hardened samples and
 - (ii) Hardened and tempered samples.

OUTCOME:

 Ability to perform Tension, Torsion, Hardness, Compression, and Deformation test on Solid materials.

LIST OF EQUIPMENT FOR BATCH OF 30 STUDENTS

S.No.	NAME OF THE EQUIPMENT	Qty.
1	Universal Tensile Testing machine with double 1 shear attachment –	1
	40 Ton Capacity	
2	Torsion Testing Machine (60 NM Capacity)	1
3	Impact Testing Machine (300 J Capacity)	1
4	Brinell Hardness Testing Machine	1
5	Rockwell Hardness Testing Machine	1
6	Spring Testing Machine for tensile and compressive loads (2500 N)	1
7	Metallurgical Microscopes	3
8	Muffle Furnace (800 C)	1

FLUID MECHANICS AND MACHINES LABORATORY LIST OF EXPERIMENTS

- 1. Determination of the Coefficient of discharge of given Orifice meter.
- 2. Determination of the Coefficient of discharge of given Venturi meter.
- 3. Calculation of the rate of flow using Rota meter.
- 4. Determination of friction factor for a given set of pipes.
- 5. Conducting experiments and drawing the characteristic curves of centrifugal pump/ submergible pump
- 6. Conducting experiments and drawing the characteristic curves of reciprocating pump.
- 7. Conducting experiments and drawing the characteristic curves of Gear pump.
- 8. Conducting experiments and drawing the characteristic curves of Pelton wheel.
- 9. Conducting experiments and drawing the characteristics curves of Francis turbine.
- 10. Conducting experiments and drawing the characteristic curves of Kaplan turbine. TOTAL: 60 PERIODS

OUTCOMES:

Upon completion of this course, the students will be able to:

- Perform Tension, Torsion, Hardness, Compression, and Deformation test on Solid materials.
- Use the measurement equipments for flow measurement.
- Perform test on different fluid machinery.

S. NO.	NAME OF THE EQUIPMENT	Qty.
1	Orifice meter setup	1
2	Venturi meter setup	1
3	Rotameter setup	1
4	Pipe Flow analysis setup	1
5	Centrifugal pump/submergible pump setup	1
6	Reciprocating pump setup	1

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

7	Gear pump setup	1
8	Pelton wheel setup	1
9	Francis turbine setup	1
10	Kaplan turbine setup	1

HS8461	ADVANCED READING AND WRITING	L	Т	Ρ	С
		0	0	2	1

OBJECTIVES:

- Strengthen the reading skills of students of engineering.
- Enhance their writing skills with specific reference to technical writing.
- Develop students' critical thinking skills.
- Provide more opportunities to develop their project and proposal writing skills.

UNIT I

Reading - Strategies for effective reading-Use glosses and footnotes to aid reading comprehension-Read and recognize different text types-Predicting content using photos and title Writing-Plan before writing- Develop a paragraph: topic sentence, supporting sentences, concluding sentence –Write a descriptive paragraph

UNIT II

Reading-Read for details-Use of graphic organizers to review and aid comprehension Writing-State reasons and examples to support ideas in writing- Write a paragraph with reasons and examples-Write an opinion paragraph

UNIT III

Reading- Understanding pronoun reference and use of connectors in a passage- speed reading techniques-Writing- Elements of a good essay-Types of essays- descriptive-narrative- issue-based-argumentative-analytical.

UNIT IV

Reading- Genre and Organization of Ideas- Writing- Email writing- resumes – Job application- project writing-writing convincing proposals.

UNIT V

Reading- Critical reading and thinking- understanding how the text positions the reader- identify Writing- Statement of Purpose- letter of recommendation- Vision statement

TOTAL: 30 PERIODS

OUTCOMES: At the end of the course Learners will be able to:

- Write different types of essays.
- Write winning job applications.
- Read and evaluate texts critically.
- Display critical thinking in various professional contexts.

TEXT BOOKS:

- 1. Debra Daise, CharlNorloff, and Paul Carne Reading and Writing (Level 4) Oxford University Press: Oxford, 2011
- 2. Gramer F. Margot and Colin S. Ward Reading and Writing (Level 3) Oxford University Press: Oxford, 2011

REFERENCES

- 1. Davis, Jason and Rhonda Llss. Effective Academic Writing (Level 3) Oxford University Press: Oxford, 2006
- 2. E. Suresh Kumar and et al. Enriching Speaking and Writing Skills. Second Edition. Orient Black swan: Hyderabad, 2012
- 3. Withrow, Jeans and et al. Inspired to Write. Readings and Tasks to develop writing skills. Cambridge University Press: Cambridge, 2004
- 4. Goatly, Andrew. Critical Reading and Writing. Routledge: United States of America, 2000
- 5. Petelin, Roslyn and Marsh Durham. The Professional Writing Guide: Knowing Well and Knowing Why. Business & Professional Publishing: Australia, 2004

ME8595

THERMAL ENGINEERING – II С т Ρ 3 0 0 3

OBJECTIVES:

- To apply the thermodynamic concepts for Nozzles, Boilers, Turbines, and Refrigeration & Air Conditioning Systems.
- To understand the concept of utilising residual heat in thermal systems. ٠

UNIT I STEAM NOZZLE

Types and Shapes of nozzles, Flow of steam through nozzles, Critical pressure ratio, Variation of mass flow rate with pressure ratio. Effect of friction. Metastable flow.

UNIT II BOILERS

Types and comparison. Mountings and Accessories. Fuels - Solid, Liquid and Gas. Performance calculations, Boiler trial.

UNIT III **STEAM TURBINES**

Types, Impulse and reaction principles, Velocity diagrams, Work done and efficiency - optimal operating conditions. Multi-staging, compounding and governing.

UNIT IV COGENERATION AND RESIDUAL HEAT RECOVERY

Cogeneration Principles, Cycle Analysis, Applications, Source and utilisation of residual heat. Heat pipes, Heat pumps, Recuperative and Regenerative heat exchangers. Economic Aspects.

UNIT V **REFRIGERATION AND AIR – CONDITIONING**

Vapour compression refrigeration cycle, Effect of Superheat and Sub-cooling, Performance calculations, Working principle of air cycle, vapour absorption system, and Thermoelectric refrigeration. Air conditioning systems, concept of RSHF, GSHF and ESHF, Cooling load calculations. Cooling towers – concept and types.

OUTCOMES:

Upon the completion of this course the students will be able to

- CO1 Solve problems in Steam Nozzle
- CO2 Explain the functioning and features of different types of Boilers and auxiliaries and calculate performance parameters.
- Explain the flow in steam turbines, draw velocity diagrams for steam turbines and solve CO3 problems.
- CO4 Summarize the concept of Cogeneration, Working features of Heat pumps and Heat exchangers
- CO5 Solve problems using refrigerant table / charts and psychrometric charts

9

9

9

TOTAL:45 PERIODS

9

TEXT BOOKS:

- 1. Kothandaraman, C.P., Domkundwar .S and Domkundwar A.V.,"A course in Thermal Engineering", Dhanpat Rai & Sons, 2016.
- 2. Mahesh. M. Rathore, "Thermal Engineering", 1st Edition, Tata Mc Graw Hill Publications, 2010.

REFERENCES:

- 1. Arora .C.P., "Refrigeration and Air Conditioning", Tata Mc Graw Hill, 2008
- 2. Ballaney. P.L." Thermal Engineering", Khanna publishers, 24th Edition 2012
- 3. Charles H Butler : Cogeneration" McGraw Hill, 1984.
- 4. Donald Q. Kern, "Process Heat Transfer", Tata Mc Graw Hill, 2001.
- 5. Sydney Reiter "Industrial and Commercial Heat Recovery Systems" Van Nostrand Reinhols, 1985.

ME8593

DESIGN OF MACHINE ELEMENTS

L T P C 3 0 0 3

OBJECTIVES

- To familiarize the various steps involved in the Design Process
- To understand the principles involved in evaluating the shape and dimensions of a component to satisfy functional and strength requirements.
- To learn to use standard practices and standard data
- To learn to use catalogues and standard machine components
- (Use of P S G Design Data Book is permitted)

UNIT I STEADY STRESSES AND VARIABLE STRESSES IN MACHINE MEMBERS 9

Introduction to the design process - factors influencing machine design, selection of materials based on mechanical properties - Preferred numbers, fits and tolerances – Direct, Bending and torsional stress equations – Impact and shock loading – calculation of principle stresses for various load combinations, eccentric loading – curved beams – crane hook and 'C' frame- Factor of safety - theories of failure – Design based on strength and stiffness – stress concentration – Design for variable loading.

UNIT II SHAFTS AND COUPLINGS

Design of solid and hollow shafts based on strength, rigidity and critical speed – Keys, keyways and splines - Rigid and flexible couplings.

UNIT III TEMPORARY AND PERMANENT JOINTS

Threaded fastners - Bolted joints including eccentric loading, Knuckle joints, Cotter joints – Welded joints, riveted joints for structures - theory of bonded joints.

UNIT IV ENERGY STORING ELEMENTS AND ENGINE COMPONENTS

Various types of springs, optimization of helical springs - rubber springs - Flywheels considering stresses in rims and arms for engines and punching machines- Connecting Rods and crank shafts.

UNIT V BEARINGS

Sliding contact and rolling contact bearings - Hydrodynamic journal bearings, Sommerfeld Number, Raimondi and Boyd graphs, -- Selection of Rolling Contact bearings.

TOTAL: 45 PERIODS

9

9

9

OUTCOMES:

Upon the completion of this course the students will be able to

- CO1 Explain the influence of steady and variable stresses in machine component design.
- CO2 Apply the concepts of design to shafts, keys and couplings.
- CO3 Apply the concepts of design to temporary and permanent joints.
- CO4 Apply the concepts of design to energy absorbing members, connecting rod and crank shaft.
- CO5 Apply the concepts of design to bearings.

TEXT BOOKS:

- 1. Bhandari V, "Design of Machine Elements", 4th Edition, Tata McGraw-Hill Book Co, 2016.
- 2. Joseph Shigley, Charles Mischke, Richard Budynas and Keith Nisbett "Mechanical Engineering Design", 9th Edition, Tata McGraw-Hill, 2011.

REFERENCES:

- 1. Alfred Hall, Halowenko, A and Laughlin, H., "Machine Design", Tata McGraw-Hill BookCo.(Schaum's Outline), 2010
- Ansel Ugural, "Mechanical Design An Integral Approach", 1St Edition, Tata McGraw-Hill Book Co, 2003.
- 3. P.C. Gope, "Machine Design Fundamental and Application", PHI learning private ltd, New Delhi, 2012.
- 4. R.B. Patel, "Design of Machine Elements", MacMillan Publishers India P Ltd., Tech-Max Educational resources, 2011.
- 5. Robert C. Juvinall and Kurt M. Marshek, "Fundamentals of Machine Design", 4th Edition, Wiley, 2005
- 6. Sundararajamoorthy T. V. Shanmugam .N, "Machine Design", Anuradha Publications, Chennai, 2015.

ME8501 METROLOGY AND MEASUREMENTS L T P C 3 0 0 3

OBJECTIVES:

- To provide knowledge on various Metrological equipments available to measure the dimension of the components.
- To provide knowledge on the correct procedure to be adopted to measure the dimension of the components.

UNIT I BASICS OF METROLOGY

Introduction to Metrology – Need – Elements – Work piece, Instruments – Persons – Environment – their effect on Precision and Accuracy – Errors – Errors in Measurements – Types – Control – Types of standards.

UNIT II LINEAR AND ANGULAR MEASUREMENTS

Linear Measuring Instruments – Evolution – Types – Classification – Limit gauges – gauge design – terminology – procedure – concepts of interchange ability and selective assembly – Angular measuring instruments – Types – Bevel protractor clinometers angle gauges, spirit levels sine bar – Angle alignment telescope – Autocollimator – Applications.

9

UNIT III ADVANCES IN METROLOGY

Basic concept of lasers Advantages of lasers – laser Interferometers – types – DC and AC Lasers interferometer – Applications – Straightness – Alignment. Basic concept of CMM – Types of CMM – Constructional features – Probes – Accessories – Software – Applications – Basic concepts of Machine Vision System – Element – Applications.

UNIT IV FORM MEASUREMENT

Principles and Methods of straightness – Flatness measurement – Thread measurement, gear measurement, surface finish measurement, Roundness measurement – Applications.

UNIT V MEASUREMENT OF POWER, FLOW AND TEMPERATURE

Force, torque, power - mechanical, Pneumatic, Hydraulic and Electrical type. Flow measurement: Venturimeter, Orifice meter, rotameter, pitot tube – Temperature: bimetallic strip, thermocouples, electrical resistance thermometer – Reliability and Calibration – Readability and Reliability.

OUTCOMES:

Upon the completion of this course the students will be able to

- CO1 Describe the concepts of measurements to apply in various metrological instruments
- CO2 Outline the principles of linear and angular measurement tools used for industrial applications
- CO3 Explain the procedure for conducting computer aided inspection
- CO4 Demonstrate the techniques of form measurement used for industrial components
- CO5 Discuss various measuring techniques of mechanical properties in industrial applications

TEXT BOOKS:

- 1. Gupta. I.C., "Engineering Metrology", Dhanpatrai Publications, 2005.
- 2. Jain R.K. "Engineering Metrology", Khanna Publishers, 2009.

REFERENCES:

- 1. Alan S. Morris, "The essence of Measurement", Prentice Hall of India 1996.
- 2. Beckwith, Marangoni, Lienhard, "Mechanical Measurements", Pearson Education, 2014.
- Charles Reginald Shotbolt, "Metrology for Engineers", 5th edition, Cengage Learning EMEA,1990.
- 4. Donald Peckman, "Industrial Instrumentation", Wiley Eastern, 2004.
- 5. Raghavendra ,Krishnamurthy "Engineering Metrology & Measurements", Oxford Univ. Press, 2013.

ME8594

DYNAMICS OF MACHINES

L T P C 4 0 0 4

OBJECTIVES:

- To understand the force-motion relationship in components subjected to external forces and analysis of standard mechanisms.
- To understand the undesirable effects of unbalances resulting from prescribed motions in mechanism.
- To understand the effect of Dynamics of undesirable vibrations.
- To understand the principles in mechanisms used for speed control and stability control.

9

9

TOTAL: 45 PERIODS

UNIT I FORCE ANALYSIS

Dynamic force analysis – Inertia force and Inertia torque– D Alembert's principle –Dynamic Analysis in reciprocating engines - Gas forces - Inertia effect of connecting rod- Bearing loads - Crank shaft torque – Turning moment diagrams – Fly Wheels – Flywheels of punching presses- Dynamics of Cam- follower mechanism.

UNIT II BALANCING

Static and dynamic balancing – Balancing of rotating masses – Balancing a single cylinder engine – Balancing of Multi-cylinder inline, V-engines – Partial balancing in engines – Balancing of linkages – Balancing machines-Field balancing of discs and rotors.

UNIT III **FREE VIBRATION**

Basic features of vibratory systems – Degrees of freedom – single degree of freedom – Free vibration- Equations of motion - Natural frequency - Types of Damping - Damped vibration-Torsional vibration of shaft - Critical speeds of shafts - Torsional vibration - Two and three rotor torsional systems.

FORCED VIBRATION UNIT IV

Response of one degree freedom systems to periodic forcing - Harmonic disturbances -Disturbance caused by unbalance - Support motion -transmissibility - Vibration isolation vibration measurement.

UNIT V **MECHANISM FOR CONTROL**

Governors – Types – Centrifugal governors – Gravity controlled and spring controlled centrifugal governors – Characteristics – Effect of friction – Controlling force curves. Gyroscopes –Gyroscopic forces and torques - Gyroscopic stabilization - Gyroscopic effects in Automobiles, ships and airplanes.

OUTCOMES:

Upon the completion of this course the students will be able to

- CO1 Calculate static and dynamic forces of mechanisms.
- CO2 Calculate the balancing masses and their locations of reciprocating and rotating masses.
- CO3 Compute the frequency of free vibration.
- CO4 Compute the frequency of forced vibration and damping coefficient.
- CO5 Calculate the speed and lift of the governor and estimate the gyroscopic effect on automobiles, ships and airplanes.

TEXT BOOKS:

- 1. F. B. Sayyad, "Dynamics of Machinery", McMillan Publishers India Ltd., Tech-Max Educational resources, 2011.
- 2. Rattan, S.S, "Theory of Machines", 4th Edition, Tata McGraw-Hill, 2014.
- 3. Uicker, J.J., Pennock G.R and Shigley, J.E., "Theory of Machines and Mechanisms", 4th Edition, Oxford University Press, 2014.

REFERENCES:

- 1. Cleghorn. W. L, "Mechanisms of Machines", Oxford University Press, 2014
- 2. Ghosh. A and Mallick, A.K., "Theory of Mechanisms and Machines", 3rd Edition Affiliated East-West Pvt. Ltd., New Delhi, 2006. 3. Khurmi, R.S., "Theory of Machines", 14th Edition, S Chand Publications, 2005.
- 4. Rao.J.S. and Dukkipati.R.V. "Mechanisms and Machine Theory", Wiley-Eastern Ltd., New Delhi, 1992.
- 5. Robert L. Norton, "Kinematics and Dynamics of Machinery", Tata McGraw-Hill, 2009.
- 6. V.Ramamurthi, "Mechanics of Machines", Narosa Publishing House, 2002.

12

12

12

12

TOTAL: 60 PERIODS

ME8511

OBJECTIVES:

- To supplement the principles learnt in kinematics and Dynamics of Machinery.
- To understand how certain measuring devices are used for dynamic testing.

LIST OF EXPERIMENTS

- 1. a) Study of gear parameters.
 - b) Experimental study of velocity ratios of simple, compound, Epicyclic and differential gear trains.
- 2. a)Kinematics of Four Bar, Slider Crank, Crank Rocker, Double crank, Double rocker, Oscillating cylinder Mechanisms.
 - b) Kinematics of single and double universal joints.
- 3. a) Determination of Mass moment of inertia of Fly wheel and Axle system.
- b)Determination of Mass Moment of Inertia of axisymmetric bodies using Turn Table apparatus. c) Determination of Mass Moment of Inertia using bifilar suspension and compound pendulum.
- 4. Motorized gyroscope Study of gyroscopic effect and couple.
- 5. Governor Determination of range sensitivity, effort etc., for Watts, Porter, Proell, and Hartnell Governors.
- 6. Cams Cam profile drawing, Motion curves and study of jump phenomenon
- 7. a) Single degree of freedom Spring Mass System Determination of natural Frequency and verification of Laws of springs – Damping coefficient determination. b) Multi degree freedom suspension system – Determination of influence coefficient.
- 8. a) Determination of torsional natural frequency of single and Double Rotor systems.- Undamped and Damped Natural frequencies.
 - b) Vibration Absorber Tuned vibration absorber.
- 9. Vibration of Equivalent Spring mass system undamped and damped vibration.
- 10. Whirling of shafts Determination of critical speeds of shafts with concentrated loads.
- 11. a) Balancing of rotating masses. (b) Balancing of reciprocating masses.
- 12. a) Transverse vibration of Free-Free beam with and without concentrated masses. b) Forced Vibration of Cantilever beam Mode shapes and natural frequencies.
 - c) Determination of transmissibility ratio using vibrating table.

TOTAL : 60 PERIODS

OUTCOMES

Upon the completion of this course the students will be able to

- CO1 Explain gear parameters, kinematics of mechanisms, gyroscopic effect and working of lab equipments.
- CO2 Determine mass moment of inertia of mechanical element, governor effort and range sensitivity, natural frequency and damping coefficient, torsional frequency, critical speeds of shafts, balancing mass of rotating and reciprocating masses, and transmissibility ratio.

S.No.	NAME OF THE EQUIPMENT	Qty.
1	Cam follower setup.	1 No.
2	Motorised gyroscope.	1 No.
3	Governor apparatus - Watt, Porter, Proell and Hartnell governors.	1 No.
4	Whirling of shaft apparatus.	1 No.
5	Dynamic balancing machine.	1 No.
6	Two rotor vibration setup.	1 No.
7	Spring mass vibration system.	1 No.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

8	Torsional Vibration of single rotor system setup.	1 No.
9	Gear Models	1 No.
10	Kinematic Models to study various mechanisms.	1 No.
11	Turn table apparatus.	1 No.
12	Transverse vibration setup of	1 No.
	a) cantilever	

ME8512

THERMAL ENGINEERING LABORATORY

L T P C 0 0 4 2

OBJECTIVES:

- To study the value timing-V diagram and performance of IC Engines
- To Study the characteristics of fuels/Lubricates used in IC Engines
- To study the Performance of steam generator/ turbine
- To study the heat transfer phenomena predict the relevant coefficient using implementation
- To study the performance of refrigeration cycle / components

LIST OF EXPERIMENTS

I.C. ENGINE LAB

- 1. Valve Timing and Port Timing diagrams.
- 2. Actual p-v diagrams of IC engines.
- 3. Performance Test on 4 stroke Diesel Engine.
- 4. Heat Balance Test on 4 stroke Diesel Engine.
- 5. Morse Test on Multi-cylinder Petrol Engine.
- 6. Retardation Test on a Diesel Engine.
- 7. Determination of Flash Point and Fire Point of various fuels / lubricants.

STEAM LAB

- 1. Study on Steam Generators and Turbines.
- 2. Performance and Energy Balance Test on a Steam Generator.
- 3. Performance and Energy Balance Test on Steam Turbine.

HEAT TRANSFER LAB:

- 1. Thermal conductivity measurement using guarded plate apparatus.
- 2. Thermal conductivity measurement of pipe insulation using lagged pipe apparatus.
- 3. Determination of heat transfer coefficient under natural convection from a vertical cylinder.
- 4. Determination of heat transfer coefficient under forced convection from a tube.
- 5. Determination of Thermal conductivity of composite wall.
- 6. Determination of Thermal conductivity of insulating powder.
- 7. Heat transfer from pin-fin apparatus (natural & forced convection modes)
- 8. Determination of Stefan Boltzmann constant.
- 9. Determination of emissivity of a grey surface.
- 10. Effectiveness of Parallel / counter flow heat exchanger.

REFRIGERATION AND AIR CONDITIONING LAB

- 1. Determination of COP of a refrigeration system
- 2. Experiments on Psychrometric processes
- 3. Performance test on a reciprocating air compressor
- 4. Performance test in a HC Refrigeration System
- 5. Performance test in a fluidized Bed Cooling Tower

OUTCOMES:

Upon the completion of this course the students will be able to

- CO1 conduct tests on heat conduction apparatus and evaluate thermal conductivity of materials.
- CO2 conduct tests on natural and forced convective heat transfer apparatus and evaluate heat transfer coefficient.
- CO3 conduct tests on radiative heat transfer apparatus and evaluate Stefan Boltzmann constant and emissivity.
- CO4 conduct tests to evaluate the performance of parallel/counter flow heat exchanger apparatus and reciprocating air compressor.
- CO5 conduct tests to evaluate the performance of refrigeration and airconditioning test rigs.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

	NAME OF THE EQUIPMENT	Qty.
1	I.C Engine – 2 stroke and 4 stroke model	1 set
2	Apparatus for Flash and Fire Point	1 No.
3	4-stroke Diesel Engine with mechanical loading.	1 No
4	4-stroke Diesel Engine with hydraulic loading.	1 No.
5	4-stroke Diesel Engine with electrical loading.	1 No.
6	Multi-cylinder Petrol Engine	1 No.
7	Single cylinder Petrol Engine	1 No.
8	Data Acquisition system with any one of the above engines	1 No.
9	Steam Boiler with turbine setup	1 No.

S.No.	NAME OF THE EQUIPMENT	Qty.
1	Guarded plate apparatus	1 No.
2	Lagged pipe apparatus	1 No.
3	Natural convection-vertical cylinder apparatus	1 No.
4	Forced convection inside tube apparatus	1 No.
5	Composite wall apparatus	1 No.
6	Thermal conductivity of insulating powder apparatus	1 No.
7	Pin-fin apparatus	1 No.
8	Stefan-Boltzmann apparatus	1 No.
9	Emissivity measurement apparatus	1 No.
10	Parallel/counter flow heat exchanger apparatus	1 No.
11	Single/two stage reciprocating air compressor	1 No.
12	Refrigeration test rig	1 No.
13	Air-conditioning test rig	1 No.

ME8513

OBJECTIVE:

• To familiar with different measurement equipments and use of this industry for quality inspection.

LIST OF EXPERIMENTS

- 1. Calibration and use of measuring instruments Vernier caliper, micrometer, Vernier height gauge using gauge blocks
- 2. Calibration and use of measuring instruments depth micrometer, bore gauge, telescopic gauge
- 3. Measurement of linear dimensions using Comparators
- 4. Measurement of angles using bevel protractor and sine bar

5. Measurement of screw thread parameters – Screw thread Micrometers and Three wire method '(floating carriage micrometer)

6. Measurement of gear parameters – disc micrometers, gear tooth vernier caliper

7. Measurement of features in a prismatic component using Coordinate Measuring Machine (CMM)

8. Programming of CNC Coordinate Measuring Machines for repeated measurements of identical components

9. Non-contact (Optical) measurement using Toolmaker's microscope / Profile projector and Video measurement system

10. Measurement of Surface finish in components manufactured using various processes (turning, milling, grinding, etc.,) using stylus based instruments.

11. Machine tool metrology – Level tests using precision level; Testing of straightness of a machine tool guide way using Autocollimator, spindle tests.

12. Measurement of force, torque and temperature

TOTAL: 60 PERIODS

OUTCOMES

Upon the completion of this course the students will be able to

- CO1 Measure the gear tooth dimensions, angle using sine bar, straightness and flatness, thread parameters, temperature using thermocouple, force, displacement, torque and vibration.
- CO2 Calibrate the vernier, micrometer and slip gauges and setting up the comparator for the inspection.

S.No.	NAME OF THE EQUIPMENT	Qty.
1	Micrometer	5
2	Vernier Caliper	5
3	Vernier Height Gauge	2
4	Vernier depth Gauge	2
5	Slip Gauge Set	1
6	Gear Tooth Vernier	1
7	Sine Bar	1
8	Floating Carriage Micrometer	1
9	Profile Projector / Tool Makers Microscope	1
10	Parallel / counter flow heat exchanger apparatus	1
11	Mechanical / Electrical / Pneumatic Comparator	1
12	Autocollimator	1
13	Temperature Measuring Setup	1
14	Force Measuring Setup	1
15	Torque Measuring Setup	1

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

16	Coordinate measuring machine	1
17	Surface finish measuring equipment	1
18	Bore gauge	1
19	Telescope gauge	1

ME8651	DESIGN OF TRANSMISSION SYSTEMS	LT		Ρ	С
		3	0	0	3

OBJECTIVES:

- To gain knowledge on the principles and procedure for the design of Mechanical power Transmission components.
- To understand the standard procedure available for Design of Transmission of Mechanical elements
- To learn to use standard data and catalogues (Use of P S G Design Data Book permitted)

UNIT I DESIGN OF FLEXIBLE ELEMENTS

Design of Flat belts and pulleys - Selection of V belts and pulleys – Selection of hoisting wire ropes and pulleys – Design of Transmission chains and Sprockets.

UNIT II SPUR GEARS AND PARALLEL AXIS HELICAL GEARS

Speed ratios and number of teeth-Force analysis -Tooth stresses - Dynamic effects – Fatigue strength - Factor of safety - Gear materials – Design of straight tooth spur & helical gears based on strength and wear considerations – Pressure angle in the normal and transverse plane-Equivalent number of teeth-forces for helical gears.

UNIT III BEVEL, WORM AND CROSS HELICAL GEARS

Straight bevel gear: Tooth terminology, tooth forces and stresses, equivalent number of teeth. Estimating the dimensions of pair of straight bevel gears. Worm Gear: Merits and demerits-terminology. Thermal capacity, materials-forces and stresses, efficiency, estimating the size of the worm gear pair. Cross helical: Terminology-helix angles-Estimating the size of the pair of cross helical gears.

UNIT IV GEAR BOXES

Geometric progression - Standard step ratio - Ray diagram, kinematics layout -Design of sliding mesh gear box - Design of multi speed gear box for machine tool applications - Constant mesh gear box - Speed reducer unit. – Variable speed gear box, Fluid Couplings, Torque Converters for automotive applications.

UNIT V CAMS, CLUTCHES AND BRAKES

Cam Design: Types-pressure angle and under cutting base circle determination-forces and surface stresses. Design of plate clutches –axial clutches-cone clutches-internal expanding rim clutches-Electromagnetic clutches. Band and Block brakes - external shoe brakes – Internal expanding shoe brake.

TOTAL : 45 PERIODS

9

9

Q

9

OUTCOMES:

Upon the completion of this course the students will be able to

- CO1 apply the concepts of design to belts, chains and rope drives.
- CO2 apply the concepts of design to spur, helical gears.
- CO3 apply the concepts of design to worm and bevel gears.
- CO4 apply the concepts of design to gear boxes .
- CO5 apply the concepts of design to cams, brakes and clutches

TEXT BOOKS:

- 1. Bhandari V, "Design of Machine Elements", 4th Edition, Tata McGraw-Hill Book Co, 2016.
- 2. Joseph Shigley, Charles Mischke, Richard Budynas and Keith Nisbett "Mechanical Engineering Design", 8th Edition, Tata McGraw-Hill, 2008.

REFERENCES:

- 1. Merhyle F. Spotts, Terry E. Shoup and Lee E. Hornberger, "Design of Machine Elements" 8th Edition, Printice Hall, 2003.
- 2. Orthwein W, "Machine Component Design", Jaico Publishing Co, 2003.
- 3. Prabhu. T.J., "Design of Transmission Elements", Mani Offset, Chennai, 2000.
- 4. Robert C. Juvinall and Kurt M. Marshek, "Fundamentals of Machine Design", 4th Edition, Wiley, 2005
- 5. Sundararajamoorthy T. V, Shanmugam .N, "Machine Design", Anuradha Publications, Chennai, 2003.

ME8691 COMPUTER AIDED DESIGN AND MANUFACTURING L T P C

3 0 0 3

OBJECTIVES:

- To provide an overview of how computers are being used in mechanical component design
- To understand the application of computers in various aspects of Manufacturing viz., Design, Proper planning, Manufacturing cost, Layout & Material Handling system.

UNIT I INTRODUCTION

Product cycle- Design process- sequential and concurrent engineering- Computer aided design – CAD system architecture- Computer graphics – co-ordinate systems- 2D and 3D transformationshomogeneous coordinates - Line drawing -Clipping- viewing transformation-Brief introduction to CAD and CAM – Manufacturing Planning, Manufacturing control- Introduction to CAD/CAM –CAD/CAM concepts —Types of production - Manufacturing models and Metrics – Mathematical models of Production Performance

UNIT II GEOMETRIC MODELING

Representation of curves- Hermite curve- Bezier curve- B-spline curves-rational curves-Techniques for surface modeling – surface patch- Coons and bicubic patches- Bezier and B-spline surfaces. Solid modeling techniques- CSG and B-rep

UNIT III CAD STANDARDS

Standards for computer graphics- Graphical Kernel System (GKS) - standards for exchange images-Open Graphics Library (OpenGL) - Data exchange standards - IGES, STEP, CALS etc. communication standards.

9

9

UNIT IV FUNDAMENTAL OF CNC AND PART PROGRAMING

Introduction to NC systems and CNC - Machine axis and Co-ordinate system- CNC machine tools-Principle of operation CNC- Construction features including structure- Drives and CNC controllers-2D and 3D machining on CNC- Introduction of Part Programming, types - Detailed Manual part programming on Lathe & Milling machines using G codes and M codes- Cutting Cycles, Loops, Sub program and Macros- Introduction of CAM package.

UNIT V CELLULAR MANUFACTURING AND FLEXIBLE MANUFACTURING SYSTEM (FMS)

Group Technology(GT),Part Families–Parts Classification and coding–Simple Problems in Opitz Part Coding system–Production flow Analysis–Cellular Manufacturing–Composite part concept–Types of Flexibility - FMS – FMS Components – FMS Application & Benefits – FMS Planning and Control–Quantitative analysis in FMS

OUTCOMES:

Upon the completion of this course the students will be able to

- CO1 Explain the 2D and 3D transformations, clipping algorithm, Manufacturing models and Metrics
- CO2 Explain the fundamentals of parametric curves, surfaces and Solids
- CO3 Summarize the different types of Standard systems used in CAD
- CO4 Apply NC & CNC programming concepts to develop part programme for Lathe & Milling Machines
- CO5 Summarize the different types of techniques used in Cellular Manufacturing and FMS

TEXT BOOKS:

- 1. Ibrahim Zeid "Mastering CAD CAM" Tata McGraw-Hill PublishingCo.2007
- 2. Mikell.P.Groover "Automation, Production Systems and Computer Integrated Manufacturing", Prentice Hall of India, 2008.
- 3. Radhakrishnan P, SubramanyanS.andRaju V., "CAD/CAM/CIM", 2nd Edition, New Age International (P) Ltd, New Delhi,2000.

REFERENCES:

- 1. Chris McMahon and Jimmie Browne "CAD/CAM Principles", "Practice and Manufacturing management "Second Edition, Pearson Education, 1999.
- 2. Donald Hearn and M. Pauline Baker "Computer Graphics". Prentice Hall, Inc, 1992.
- 3. Foley, Wan Dam, Feiner and Hughes "Computer graphics principles & practice" Pearson Education -2003
- 4. William M Neumann and Robert F.Sproul "Principles of Computer Graphics", McGraw Hill Book Co. Singapore, 1989.

ME8693

HEAT AND MASS TRANSFER

L	Т	Ρ	С
3	2	0	4

OBJECTIVES:

- To understand the mechanisms of heat transfer under steady and transient conditions.
- To understand the concepts of heat transfer through extended surfaces.
- To learn the thermal analysis and sizing of heat exchangers and to understand the basic concepts of mass transfer.

(Use of standard HMT data book permitted)

9

TOTAL: 45 PERIODS

UNIT I CONDUCTION

General Differential equation of Heat Conduction- Cartesian and Polar Coordinates - One Dimensional Steady State Heat Conduction - plane and Composite Systems - Conduction with Internal Heat Generation - Extended Surfaces - Unsteady Heat Conduction - Lumped Analysis -Semi Infinite and Infinite Solids –Use of Heisler's charts.

UNIT II CONVECTION

Free and Forced Convection - Hydrodynamic and Thermal Boundary Layer. Free and Forced Convection during external flow over Plates and Cylinders and Internal flow through tubes .

UNIT III PHASE CHANGE HEAT TRANSFER AND HEAT EXCHANGERS

Nusselt's theory of condensation - Regimes of Pool boiling and Flow boiling. Correlations in boiling and condensation. Heat Exchanger Types - Overall Heat Transfer Coefficient - Fouling Factors -Analysis – LMTD method - NTU method.

UNIT IV RADIATION

Black Body Radiation – Grey body radiation - Shape Factor – Electrical Analogy – Radiation Shields. Radiation through gases.

UNIT V MASS TRANSFER

Basic Concepts – Diffusion Mass Transfer – Fick's Law of Diffusion – Steady state Molecular Diffusion - Convective Mass Transfer - Momentum, Heat and Mass Transfer Analogy -Convective Mass Transfer Correlations.

OUTCOMES:

Upon the completion of this course the students will be able to

- CO1 Apply heat conduction equations to different surface configurations under steady state and transient conditions and solve problems
- Apply free and forced convective heat transfer correlations to internal and external CO2 flows through/over various surface configurations and solve problems
- CO3 Explain the phenomena of boiling and condensation, apply LMTD and NTU methods of thermal analysis to different types of heat exchanger configurations and solve problems
- CO4 Explain basic laws for Radiation and apply these principles to radiative heat transfer between different types of surfaces to solve problems
- CO5 Apply diffusive and convective mass transfer equations and correlations to solve problems for different applications

TEXT BOOKS:

- 1. Holman, J.P., "Heat and Mass Transfer", Tata McGraw Hill, 2000
- 2. Yunus A. Cengel, "Heat Transfer A Practical Approach", Tata McGraw Hill, 5th Edition 2015

REFERENCES:

- 1. Frank P. Incropera and David P. Dewitt, "Fundamentals of Heat and Mass Transfer", John Wiley & Sons, 1998.
- 2. Kothandaraman, C.P., "Fundamentals of Heat and Mass Transfer", New Age International, New Delhi, 1998.
- 3. Nag, P.K., "Heat Transfer", Tata McGraw Hill, New Delhi, 2002
- 4. Ozisik, M.N., "Heat Transfer", McGraw Hill Book Co., 1994.
- 5. R.C. Sachdeva, "Fundamentals of Engineering Heat & Mass transfer", New Age International Publishers, 2009

9+6

TOTAL: 75 PERIODS

9+6

9+6

9+6

ME8692

OBJECTIVES:

- To introduce the concepts of Mathematical Modeling of Engineering Problems.
- To appreciate the use of FEM to a range of Engineering Problems.

UNIT I INTRODUCTION

Historical Background – Mathematical Modeling of field problems in Engineering – Governing Equations - Discrete and continuous models - Boundary, Initial and Eigen Value problems-Weighted Residual Methods - Variational Formulation of Boundary Value Problems - Ritz Technique – Basic concepts of the Finite Element Method.

UNIT II **ONE-DIMENSIONAL PROBLEMS**

One Dimensional Second Order Equations - Discretization - Element types- Linear and Higher order Elements – Derivation of Shape functions and Stiffness matrices and force vectors- Assembly of Matrices - Solution of problems from solid mechanics and heat transfer. Longitudinal vibration frequencies and mode shapes. Fourth Order Beam Equation – Transverse deflections and Natural frequencies of beams.

UNIT III TWO DIMENSIONAL SCALAR VARIABLE PROBLEMS

Second Order 2D Equations involving Scalar Variable Functions - Variational formulation - Finite Element formulation – Triangular elements – Shape functions and element matrices and vectors. Application to Field Problems - Thermal problems - Torsion of Non circular shafts - Quadrilateral elements - Higher Order Elements.

UNIT IV TWO DIMENSIONAL VECTOR VARIABLE PROBLEMS

Equations of elasticity - Plane stress, plane strain and axisymmetric problems - Body forces and temperature effects - Stress calculations - Plate and shell elements.

ISOPARAMETRIC FORMULATION UNIT V

Natural co-ordinate systems - Isoparametric elements - Shape functions for iso parametric elements - One and two dimensions - Serendipity elements - Numerical integration and application to plane stress problems - Matrix solution techniques - Solutions Techniques to Dynamic problems – Introduction to Analysis Software.

TOTAL: 45 PERIODS

- OUTCOMES
 - CO1 Summarize the basics of finite element formulation.
 - CO2 Apply finite element formulations to solve one dimensional Problems.
 - CO3 Apply finite element formulations to solve two dimensional scalar Problems.
 - CO4 Apply finite element method to solve two dimensional Vector problems.
 - CO5 Apply finite element method to solve problems on iso parametric element and dynamic Problems.

TEXT BOOKS:

- 1. Reddy. J.N., "An Introduction to the Finite Element Method", 3rd Edition, Tata McGraw-Hill, 2005
- 2. Seshu, P, "Text Book of Finite Element Analysis", Prentice-Hall of India Pvt. Ltd., New Delhi, 2007.

9

9

9

9

REFERENCES:

- 1. Bhatti Asghar M, "Fundamental Finite Element Analysis and Applications", John Wiley & Sons, 2005 (Indian Reprint 2013)*
- 2. Chandrupatla & Belagundu, "Introduction to Finite Elements in Engineering", 3rd Edition, Prentice Hall College Div, 1990
- 3. Logan, D.L., "A first course in Finite Element Method", Thomson Asia Pvt. Ltd., 2002
- 4. Rao, S.S., "The Finite Element Method in Engineering", 3rd Edition, Butterworth Heinemann, 2004
- 5. Robert D. Cook, David S. Malkus, Michael E. Plesha, Robert J. Witt, "Concepts and Applications of Finite Element Analysis", 4th Edition, Wiley Student Edition, 2002.

ME8694

HYDRAULICS AND PNEUMATICS

L T P C 3 0 0 3

OBJECTIVES:

- To provide student with knowledge on the application of fluid power in process, construction and manufacturing Industries.
- To provide students with an understanding of the fluids and components utilized in modern industrial fluid power system.
- To develop a measurable degree of competence in the design, construction and operation of fluid power circuits.

UNIT I FLUID POWER PRINICIPLES AND HYDRAULIC PUMPS

Introduction to Fluid power – Advantages and Applications – Fluid power systems – Types of fluids - Properties of fluids and selection – Basics of Hydraulics – Pascal's Law – Principles of flow -Friction loss – Work, Power and Torque Problems, Sources of Hydraulic power : Pumping Theory – Pump Classification – Construction, Working, Design, Advantages, Disadvantages, Performance, Selection criteria of Linear and Rotary – Fixed and Variable displacement pumps – Problems.

UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS

Hydraulic Actuators: Cylinders – Types and construction, Application, Hydraulic cushioning – Hydraulic motors - Control Components : Direction Control, Flow control and pressure control valves – Types, Construction and Operation – Servo and Proportional valves – Applications – Accessories : Reservoirs, Pressure Switches – Applications – Fluid Power ANSI Symbols – Problems.

UNIT III HYDRAULIC CIRCUITS AND SYSTEMS

Accumulators, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Double-Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail-Safe, Speed Control, Hydrostatic transmission, Electro hydraulic circuits, Mechanical hydraulic servo systems.

UNIT IV PNEUMATIC AND ELECTRO PNEUMATIC SYSTEMS

Properties of air – Perfect Gas Laws – Compressor – Filters, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust Valves, Pneumatic actuators, Design of Pneumatic circuit – Cascade method – Electro Pneumatic System – Elements – Ladder diagram – Problems, Introduction to fluidics and pneumatic logic circuits.

9

9

9

UNIT V TROUBLE SHOOTING AND APPLICATIONS

Installation, Selection, Maintenance, Trouble Shooting and Remedies in Hydraulic and Pneumatic systems, Design of hydraulic circuits for Drilling, Planning, Shaping, Surface grinding, Press and Forklift applications. Design of Pneumatic circuits for Pick and Place applications and tool handling in CNC Machine tools – Low cost Automation – Hydraulic and Pneumatic power packs.

OUTCOMES:

Upon the completion of this course the students will be able to

- CO1 Explain the Fluid power and operation of different types of pumps.
- CO2 Summarize the features and functions of Hydraulic motors, actuators and Flow control valves
- CO3 Explain the different types of Hydraulic circuits and systems
- CO4 Explain the working of different pneumatic circuits and systems
- CO5 Summarize the various trouble shooting methods and applications of hydraulic and pneumatic systems.

TEXT BOOKS:

- 1. Anthony Esposito, "Fluid Power with Applications", Pearson Education 2005.
- 2. Majumdar S.R., "Oil Hydraulics Systems- Principles and Maintenance", Tata McGraw-Hill, 2001.

REFERENCES:

- 1. Anthony Lal, "Oil hydraulics in the service of industry", Allied publishers, 1982.
- 2. Dudelyt, A. Pease and John T. Pippenger, "Basic Fluid Power", Prentice Hall, 1987.
- 3. Majumdar S.R., "Pneumatic systems Principles and maintenance", Tata McGraw Hill, 1995
- 4. Michael J, Prinches and Ashby J. G, "Power Hydraulics", Prentice Hall, 1989.
- 5. Shanmugasundaram.K, "Hydraulic and Pneumatic controls", Chand & Co, 2006.

ME8681	CAD / CAM LABORATORY	L	Т	Ρ	С

OBJECTIVES:

- To gain practical experience in handling 2D drafting and 3D modelling software systems.
- To study the features of CNC Machine Tool.
- To expose students to modern control systems (Fanuc, Siemens etc.,)
- To know the application of various CNC machines like CNC lathe, CNC Vertical Machining centre, CNC EDM and CNC wire-cut and studying of Rapid prototyping.

LIST OF EXPERIMENTS

1. 3D GEOMETRIC MODELLING

List of Experiments

1. Introduction of 3D Modelling software

Creation of 3D assembly model of following machine elements using 3D Modelling software

- 2. Flange Coupling
- 3. Plummer Block
- 4. Screw Jack
- 5. Lathe Tailstock
- 6. Universal Joint
- 7. Machine Vice
- 8. Stuffing box
- 9. Crosshead

30 PERIODS

TOTAL:45 PERIODS

L T P 0 0 4
- 10. Safety Valves
- 11. Non-return valves
- 12. Connecting rod
- 13. Piston
- 14. Crankshaft
- * Students may also be trained in manual drawing of some of the above components

2. Manual Part Programming.

(i) Part Programming - CNC Machining Centre a) Linear Cutting.
b) Circular cutting.
c) Cutter Radius
Compensation. d) Canned
Cycle Operations.
(ii) Part Programming - CNC Turning
Centre a) Straight, Taper and Radius
Turning.
b) Thread Cutting.
c) Rough and Finish Turning
Cycle. d) Drilling and Tapping
Cycle.

3. Computer Aided Part Programming

- e) CL Data and Post process generation using CAM packages.
- f) Application of CAPP in Machining and Turning Centre.

OUTCOMES

- CO1 Draw 3D and Assembly drawing using CAD software
- CO2 Demonstrate manual part programming with G and M codes using CAM

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

S.No.	Description of Equipment	Qty
HARD	WARE	
1.	Computer Server	1
	Computer nodes or systems (High end CPU with atleast 1	
2.	GB main memory) networked to the server	30
3.	A3 size plotter	1
4.	Laser Printer	1
5.	CNC Lathe	1
6.	CNC milling machine	1
SOFT	VARE	
	Any High end integrated modeling and manufacturing CAD	
7.	/ CAM software	15 licenses
	CAM Software for machining centre and turning centre	
8.	(CNC Programming and tool path simulation for FANUC /	15 licenses
	Sinumeric and Heidenhain controller)	
9.	Licensed operating system	Adequate
10.	Support for CAPP	Adequate

30 PERIODS

TOTAL: 60 PERIODS

ME8682

TOTAL: 60 PERIODS

OBJECTIVE:

• The main objective is to give an opportunity to the student to get hands on training in the fabrication of one or more components of a complete working model, which is designed by them.

GUIDELINE FOR REVIEW AND EVALUATION

The students may be grouped into 2 to 4 and work under a project supervisor. The device/ system/component(s) to be fabricated may be decided in consultation with the supervisor and if possible with an industry. A project report to be submitted by the group and the fabricated model, which will be reviewed and evaluated for internal assessment by a Committee constituted by the Head of the Department. At the end of the semester examination the project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

OUTCOMES:

Upon the completion of this course the students will be able to

CO1 design and Fabricate the machine element or the mechanical product.

CO2 demonstrate the working model of the machine element or the mechanical product.

HS8581	PROFESSIONAL COMMUNICATION	L	т	Ρ	С
		0	0	2	1

OBJECTIVES: The course aims to:

- Enhance the Employability and Career Skills of students
- Orient the students towards grooming as a professional
- Make them Employable Graduates
- Develop their confidence and help them attend interviews successfully.

UNIT I

Introduction to Soft Skills-- Hard skills & soft skills - employability and career Skills—Grooming as a professional with values—Time Management—General awareness of Current Affairs

UNIT II

Self-Introduction-organizing the material - Introducing oneself to the audience – introducing the topic – answering questions – individual presentation practice— presenting the visuals effectively – 5 minute presentations

UNIT III

Introduction to Group Discussion— Participating in group discussions – understanding group dynamics - brainstorming the topic -- questioning and clarifying –GD strategies- activities to improve GD skills

UNIT IV

Interview etiquette – dress code – body language – attending job interviews– telephone/skype interview - one to one interview &panel interview – FAQs related to job interviews

UNIT V

Recognizing differences between groups and teams- managing time-managing stress- networking professionally- respecting social protocols-understanding career management-developing a long-term career plan-making career changes

TOTAL: 30 PERIODS

OUTCOMES: At the end of the course Learners will be able to:

- Make effective presentations
- Participate confidently in Group Discussions.
- Attend job interviews and be successful in them.
- Develop adequate Soft Skills required for the workplace

Recommended Software

- 1. Open Source Software
- 2. Win English

REFERENCES:

- 1. Butterfield, Jeff Soft Skills for Everyone. Cengage Learning: New Delhi, 2015
- 2. E. Suresh Kumar et al. Communication for Professional Success. Orient Blackswan: Hyderabad, 2015
- 3. Interact English Lab Manual for Undergraduate Students, OrientBalckSwan: Hyderabad, 2016.
- 4. Raman, Meenakshi and Sangeeta Sharma. Professional Communication. Oxford University Press: Oxford, 2014
- 5. S. Hariharanetal. Soft Skills. MJP Publishers: Chennai, 2010.

POWER PLANT ENGINEERING	L	Т	Ρ	С
	3	0	0	3

OBJECTIVE:

ME8792

Providing an overview of Power Plants and detailing the role of Mechanical Engineers in their operation and maintenance.

UNIT I COAL BASED THERMAL POWER PLANTS

Rankine cycle - improvisations, Layout of modern coal power plant, Super Critical Boilers, FBC Boilers, Turbines, Condensers, Steam & Heat rate, Subsystems of thermal power plants – Fuel and ash handling, Draught system, Feed water treatment. Binary Cycles and Cogeneration systems.

UNIT II DIESEL, GAS TURBINE AND COMBINED CYCLE POWER PLANTS

Otto, Diesel, Dual & Brayton Cycle - Analysis & Optimisation. Components of Diesel and Gas Turbine power plants. Combined Cycle Power Plants. Integrated Gasifier based Combined Cycle systems.

UNIT III NUCLEAR POWER PLANTS

Basics of Nuclear Engineering, Layout and subsystems of Nuclear Power Plants, Working of Nuclear Reactors : Boiling Water Reactor (BWR), Pressurized Water Reactor (PWR), CANada Deuterium- Uranium reactor (CANDU), Breeder, Gas Cooled and Liquid Metal Cooled Reactors. Safety measures for Nuclear Power plants.

9

9

UNIT IV POWER FROM RENEWABLE ENERGY

Hydro Electric Power Plants – Classification, Typical Layout and associated components including Turbines. Principle, Construction and working of Wind, Tidal, *Solar* Photo Voltaic (SPV), Solar Thermal, Geo Thermal, Biogas and Fuel Cell power systems.

UNIT V ENERGY, ECONOMIC AND ENVIRONMENTAL ISSUES OF POWER PLANTS

Power tariff types, Load distribution parameters, load curve, Comparison of site selection criteria, relative merits & demerits, Capital & Operating Cost of different power plants. Pollution control technologies including Waste Disposal Options for Coal and Nuclear Power Plants.

TOTAL: 45 PERIODS

OUTCOMES:

Upon the completion of this course the students will be able to

- CO1 Explain the layout, construction and working of the components inside a thermal power plant.
- CO2 Explain the layout, construction and working of the components inside a Diesel, Gas and Combined cycle power plants.
- CO3 Explain the layout, construction and working of the components inside nuclear power plants.
- CO4 Explain the layout, construction and working of the components inside Renewable energy power plants.
- CO5 Explain the applications of power plants while extend their knowledge to power plant economics and environmental hazards and estimate the costs of electrical energy production.

TEXT BOOK:

1. Nag. P.K., "Power Plant Engineering", Third Edition, Tata McGraw – Hill Publishing Company Ltd., 2008.

REFERENCES:

- 1. El-Wakil. M.M., "Power Plant Technology", Tata McGraw Hill Publishing Company Ltd., 2010.
- 2. Godfrey Boyle, "Renewable energy", Open University, Oxford University Press in association with the Open University, 2004.
- 3. Thomas C. Elliott, Kao Chen and Robert C. Swanekamp, "Power Plant Engineering", Second Edition, Standard Handbook of McGraw Hill, 1998.

ME8793	PROCESS PLANNING AND COST ESTIMATION	L	Т	Ρ	С
		3	0	0	3

OBJECTIVE:

• To introduce the process planning concepts to make cost estimation for various products after process planning

UNIT I INTRODUCTION TO PROCESS PLANNING

Introduction- methods of process planning-Drawing interpretation-Material evaluation – steps in process selection-.Production equipment and tooling selection

UNIT II PROCESS PLANNING ACTIVITIES

Process parameters calculation for various production processes-Selection jigs and fixtures election of quality assurance methods - Set of documents for process planning-Economics of process planning- case studies

9

9

UNIT III INTRODUCTION TO COST ESTIMATION

Importance of costing and estimation –methods of costing-elements of cost estimation –Types of estimates – Estimating procedure- Estimation labor cost, material cost- allocation of over head charges- Calculation of depreciation cost

UNIT IV PRODUCTION COST ESTIMATION

Estimation of Different Types of Jobs - Estimation of Forging Shop, Estimation of Welding Shop, Estimation of Foundry Shop

UNIT V MACHINING TIME CALCULATION

Estimation of Machining Time - Importance of Machine Time Calculation- Calculation of Machining Time for Different Lathe Operations ,Drilling and Boring - Machining Time Calculation for Milling, Shaping and Planning -Machining Time Calculation for Grinding. TOTAL: 45 PERIODS

OUTCOMES:

Upon the completion of this course the students will be able to

- CO1 select the process, equipment and tools for various industrial products.
- CO2 prepare process planning activity chart.
- CO3 explain the concept of cost estimation.
- CO4 compute the job order cost for different type of shop floor.
- CO5 calculate the machining time for various machining operations.

TEXT BOOKS:

- 1. Peter scalon, "Process planning, Design/Manufacture Interface", Elsevier science technology Books, Dec 2002.
- 2. Sinha B.P, "Mechanical Estimating and Costing", Tata-McGraw Hill publishing co, 1995.

REFERENCES:

- 1. Chitale A.V. and Gupta R.C., "Product Design and Manufacturing", 2nd Edition, PHI, 2002.
- 2. Ostwalal P.F. and Munez J., "Manufacturing Processes and systems", 9th Edition, John Wiley, 1998.
- 3. Russell R.S and Tailor B.W, "Operations Management", 4th Edition, PHI, 2003.
- 4. Mikell P. Groover, "Automation, Production, Systems and Computer Integrated Manufacturing", Pearson Education 2001.
- 5. K.C. Jain & L.N. Aggarwal, "Production Planning Control and Industrial Management", Khanna Publishers 1990.

ME8791

MECHATRONICS

L T P C 3 0 0 3

OBJECTIVE:

• To impart knowledge about the elements and techniques involved in Mechatronics systems which are very much essential to understand the emerging field of automation.

UNIT I INTRODUCTION

9

Introduction to Mechatronics – Systems – Concepts of Mechatronics approach – Need for Mechatronics – Emerging areas of Mechatronics – Classification of Mechatronics. Sensors and Transducers: Static and dynamic Characteristics of Sensor, Potentiometers – LVDT – Capacitance sensors – Strain gauges – Eddy current sensor – Hall effect sensor – Temperature sensors – Light sensors

9

UNIT II MICROPROCESSOR AND MICROCONTROLLER

Introduction – Architecture of 8085 – Pin Configuration – Addressing Modes –Instruction set, Timing diagram of 8085 – Concepts of 8051 microcontroller – Block diagram,.

UNIT III PROGRAMMABLE PERIPHERAL INTERFACE

Introduction – Architecture of 8255, Keyboard interfacing, LED display –interfacing, ADC and DAC interface, Temperature Control – Stepper Motor Control – Traffic Control interface.

UNIT IV PROGRAMMABLE LOGIC CONTROLLER

Introduction – Basic structure – Input and output processing – Programming – Mnemonics – Timers, counters and internal relays – Data handling – Selection of PLC.

UNIT V ACTUATORS AND MECHATRONIC SYSTEM DESIGN

Types of Stepper and Servo motors – Construction – Working Principle – Advantages and Disadvantages. Design process-stages of design process – Traditional and Mechatronics design concepts – Case studies of Mechatronics systems – Pick and place Robot – Engine Management system – Automatic car park barrier.

OUTCOMES:

Upon the completion of this course the students will be able to

- CO1 Discuss the interdisciplinary applications of Electronics, Electrical, Mechanical and Computer Systems for the Control of Mechanical, Electronic Systems and sensor technology.
- CO2 Discuss the architecture of Microprocessor and Microcontroller, Pin Diagram, Addressing Modes of Microprocessor and Microcontroller.
- CO3 Discuss Programmable Peripheral Interface, Architecture of 8255 PPI, and various device interfacing
- CO4 Explain the architecture, programming and application of programmable logic controllers to problems and challenges in the areas of Mechatronic engineering.
- CO5 Discuss various Actuators and Mechatronics system using the knowledge and skills acquired through the course and also from the given case studies

TEXT BOOKS:

- 1. Bolton, "Mechatronics", Prentice Hall, 2008
- 2. Ramesh S Gaonkar, "Microprocessor Architecture, Programming, and Applications with the 8085", 5th Edition, Prentice Hall, 2008.

REFERENCES:

- 1. Bradley D.A, Dawson D, Buru N.C and Loader A.J, "Mechatronics", Chapman and Hall, 1993.
- 2. Clarence W, de Silva, "Mechatronics" CRC Press, First Indian Re-print, 2013
- 3. Devadas Shetty and Richard A. Kolk, "Mechatronics Systems Design", PWS publishing company, 2007.
- 4. Krishna Kant, "Microprocessors & Microcontrollers", Prentice Hall of India, 2007.
- 5. Michael B.Histand and Davis G.Alciatore, "Introduction to Mechatronics and Measurement systems", McGraw Hill International edition, 2007.

9

9

9

ME8711

OBJECTIVES:

- To give exposure to software tools needed to analyze engineering problems.
- To expose the students to different applications of simulation and analysis tools.

LIST OF EXPERIMENTS A. SIMULATION

- 1. MATLAB basics, Dealing with matrices, Graphing-Functions of one variable and two variables
- 2. Use of Matlab to solve simple problems in vibration
- 3. Mechanism Simulation using Multibody Dynamic software

B. ANALYSIS

- 1. Force and Stress analysis using link elements in Trusses, cables etc.
- 2. Stress and deflection analysis in beams with different support conditions.
- 3. Stress analysis of flat plates and simple shells.
- 4. Stress analysis of axi symmetric components.
- 5. Thermal stress and heat transfer analysis of plates.
- 6. Thermal stress analysis of cylindrical shells.
- 7. Vibration analysis of spring-mass systems.
- 8. Model analysis of Beams.
- 9. Harmonic, transient and spectrum analysis of simple systems.

TOTAL: 60 PERIODS

OUTCOMES:

Upon the completion of this course the students will be able to

- CO1 simulate the working principle of air conditioning system, hydraulic and pneumatic cylinder and cam follower mechanisms using MATLAB.
- CO2 analyze the stresses and strains induced in plates, brackets and beams and heat transfer problems.
- CO3 calculate the natural frequency and mode shape analysis of 2D components and beams.

S. NO.	NAME OF THE EQUIPMENT	Qty.
1	Computer Work Station	15
2	Color Desk Jet Printer	01
3	Multibody Dynamic Software Suitable for Mechanism simulation and analysis	15 licenses
4	C / MATLAB	5 licenses

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

MECHATRONICS LABORATORY

L T P C 0 0 4 2

TOTAL: 60 PERIODS

OBJECTIVE:

ME8781

• To know the method of programming the microprocessor and also the design, modeling & analysis of basic electrical, hydraulic & pneumatic Systems which enable the students to understand the concept of mechatronics.

LIST OF EXPERIMENTS:

- 1. Assembly language programming of 8085 Addition Subtraction Multiplication Division Sorting Code Conversion.
- 2. Stepper motor interface.
- 3. Traffic light interface.
- 4. Speed control of DC motor.
- 5. Study of various types of transducers.
- 6. Study of hydraulic, pneumatic and electro-pneumatic circuits.
- 7. Modelling and analysis of basic hydraulic, pneumatic and electrical circuits using Software.
- 8. Study of PLC and its applications.
- 9. Study of image processing technique.

OUTCOMES:

Upon the completion of this course the students will be able to

- CO1 Demonstrate the functioning of mechatronics system with various pneumatic, hydraulic and electrical systems.
- CO2 Demonstrate the functioning of control systems with the help of PLC and microcontrollers.

SI. No.	NAME OF THE EQUIPMENT	Qty.
1	Basic Pneumatic Trainer Kit with manual and electrical controls/ PLC Control each	1 No.
2	Basic Hydraulic Trainer Kit	1 No
2		1110
3	Hydraulics and Pneumatics Systems Simulation Software	10 No
4	8051 - Microcontroller kit with stepper motor and drive	2 No
	circuit sets	
5	Image processing system with hardware & software	1 No.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

ME8712

TECHNICAL SEMINAR

L T P C 0 0 2 1

To enrich the communication skills of the student and presentations of technical topics of interest, this course is introduced. In this course, a student has to present three Technical papers or recent advances in engineering/technology that will be evaluated by a Committee constituted by the Head of the Department.

TOTAL: 30 PERIODS

9

OBJECTIVE:

• To enable the students to study the evolution of Management, to study the functions and principles of management and to learn the application of the principles in an organization

UNIT I INTRODUCTION TO MANAGEMENT AND ORGANIZATIONS

Definition of Management – Science or Art – Manager Vs Entrepreneur - types of managers - managerial roles and skills - Evolution of Management - Scientific, human relations, system and contingency approaches - Types of Business organization - Sole proprietorship, partnership, company-public and private sector enterprises - Organization culture and Environment -Current trends and issues in Management.

UNIT II PLANNING

Nature and purpose of planning - planning process - types of planning - objectives setting objectives - policies - Planning premises - Strategic Management - Planning Tools and Techniques – Decision making steps and process.

UNIT III ORGANISING

Nature and purpose – Formal and informal organization – organization chart – organization structure – types – Line and staff authority – departmentalization – delegation of authority – centralization and decentralization - Job Design - Human Resource Management - HR Planning, Recruitment, selection, Training and Development, Performance Management, Career planning and management.

UNIT IV DIRECTING

Foundations of individual and group behaviour – motivation – motivation theories – motivational techniques - job satisfaction - job enrichment - leadership - types and theories of leadership communication - process of communication - barrier in communication - effective communication - communication and IT.

CONTROLLING UNIT V

System and process of controlling – budgetary and non-budgetary control techniques – use of computers and IT in Management control – Productivity problems and management – control and performance – direct and preventive control – reporting. **TOTAL: 45 PERIODS**

OUTCOME:

Upon completion of the course, students will be able to have clear understanding of managerial functions like planning, organizing, staffing, leading & controlling and have same basic knowledge on international aspect of management

TEXT BOOKS:

- 1. JAF Stoner, Freeman R.E and Daniel R Gilbert "Management", 6th Edition, Pearson Education, 2004.
- 2. Stephen P. Robbins & Mary Coulter, "Management", Prentice Hall (India)Pvt. Ltd., 10th Edition, 2009.

REFERENCES:

- 1. Harold Koontz & Heinz Weihrich, "Essentials of Management", Tata McGraw Hill, 1998.
- 2. Robert Kreitner & Mamata Mohapatra, "Management", Biztantra, 2008.
- Stephen A. Robbins & David A. Decenzo & Mary Coulter, "Fundamentals of Management", 3. 7th Edition, Pearson Education, 2011.
- 4. Tripathy PC & Reddy PN, "Principles of Management", Tata Mcgraw Hill, 1999

9

9

9

ME8811

PROJECT WORK

TOTAL: 300 PERIODS

OBJECTIVE:

• To develop the ability to solve a specific problem right from its identification and literature review till the successful solution of the same. To train the students in preparing project reports and to face reviews and viva voce examination.

The students in a group of 3 to 4 works on a topic approved by the head of the department under the guidance of a faculty member and prepares a comprehensive project report after completing the work to the satisfaction of the supervisor. The progress of the project is evaluated based on a minimum of three reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

OUTCOME:

• On Completion of the project work students will be in a position to take up any challenging practical problems and find solution by formulating proper methodology.

ME8091 AUTOMOBILE ENGINEERING L T P C 3 0 0 3

OBJECTIVES:

- To understand the construction and working principle of various parts of an automobile.
- To have the practice for assembling and dismantling of engine parts and transmission system

UNIT I VEHICLE STRUCTURE AND ENGINES

Types of automobiles vehicle construction and different layouts, chassis, frame and body, Vehicle aerodynamics (various resistances and moments involved), IC engines –components-functions and materials, variable valve timing (VVT).

UNIT II ENGINE AUXILIARY SYSTEMS

Electronicallv controlled gasoline iniection system for SI engines, Electronically controlled diesel iniection svstem (Unit iniector system, Rotarv distributor type and common rail direct injection system), Electronic ignition system (Transistorized coil ignition system, capacitive discharge ignition system), Turbo chargers (WGT, VGT), Engine emission control by three way catalytic converter system, Emission norms (Euro and BS).

UNIT III TRANSMISSION SYSTEMS

Clutch-types and construction, gear boxes- manual and automatic, gear shift mechanisms, Over drive, transfer box, fluid flywheel, torque converter, propeller shaft, slip joints, universal joints, Differential and rear axle, Hotchkiss Drive and Torque Tube Drive.

UNIT IV STEERING, BRAKES AND SUSPENSION SYSTEMS

Steering geometry and types of steering gear box-Power Steering, Types of Front Axle, Types of Suspension Systems, Pneumatic and Hydraulic Braking Systems, Antilock Braking System (ABS), electronic brake force distribution (EBD) and Traction Control.

9

q

9

UNIT V ALTERNATIVE ENERGY SOURCES

Use of Natural Gas, Liquefied Petroleum Gas, Bio-diesel, Bio-ethanol, Gasohol and Hydrogen in Automobiles- Engine modifications required –Performance, Combustion and Emission Characteristics of SI and CI engines with these alternate fuels - Electric and Hybrid Vehicles, Fuel Cell Note: Practical Training in dismantling and assembling of Engine parts and Transmission Systems should be given to the students.

OUTCOMES:

Upon the completion of this course the students will be able to

- CO1 recognize the various parts of the automobile and their functions and materials.
- CO2 discuss the engine auxiliary systems and engine emission control.
- CO3 distinguish the working of different types of transmission systems.
- CO4 explain the Steering, Brakes and Suspension Systems.
- CO5 predict possible alternate sources of energy for IC Engines.

TEXT BOOKS:

- 1. Jain K.K. and Asthana .R.B, "Automobile Engineering" Tata McGraw Hill Publishers, New Delhi, 2002.
- 2. Kirpal Singh, "Automobile Engineering", Vol 1 & 2, Seventh Edition, Standard Publishers, New Delhi, 13th Edition 2014..

REFERENCES:

- 1. Ganesan V. "Internal Combustion Engines", Third Edition, Tata McGraw-Hill, 2012.
- 2. Heinz Heisler, "Advanced Engine Technology," SAE International Publications USA, 1998.
- 3. Joseph Heitner, "Automotive Mechanics," Second Edition, East-West Press, 1999.
- 4. Martin W, Stockel and Martin T Stockle, "Automotive Mechanics Fundamentals," The Good heart Will Cox Company Inc, USA ,1978.
- 5. Newton ,Steeds and Garet, "Motor Vehicles", Butterworth Publishers,1989.

PR8592

WELDING TECHNOLOGY

L T P C 3 0 0 3

OBJECTIVE:

• To understand the basics of welding and to know about the various types of welding processes

UNIT I GAS AND ARC WELDING PROCESSES:

Fundamental principles – Air Acetylene welding, Oxyacetylene welding, Carbon arc welding, Shielded metal arc welding, Submerged arc welding, TIG & MIG welding, Plasma arc welding and Electroslag welding processes - advantages, limitations and applications.

UNIT II RESISTANCE WELDING PROCESSES:

Spot welding, Seam welding, Projection welding, Resistance Butt welding, Flash Butt welding, Percussion welding and High frequency resistance welding processes - advantages, limitations and applications.

UNIT III SOLID STATE WELDING PROCESSES:

Cold welding, Diffusion bonding, Explosive welding, Ultrasonic welding, Friction welding, Forge welding, Roll welding and Hot pressure welding processes - advantages, limitations and applications.

9

9

9

UNIT IV OTHER WELDING PROCESSES:

Thermit welding, Atomic hydrogen welding, Electron beam welding, Laser Beam welding, Friction stir welding, Under Water welding, Welding automation in aerospace, nuclear and surface transport vehicles.

UNIT V DESIGN OF WELD JOINTS, WELDABILITY AND TESTING OF WELDMENTS 9

Various weld joint designs – Welding defects – causes and remedies - Weldability of Aluminium, Copper, and Stainless steels. Destructive and non destructive testing of weldments.

OUTCOMES:

Upon completion of this course, the students can able

- Understand the construction and working principles of gas and arc welding process.
- Understand the construction and working principles of resistance welding process.
- Understand the construction and working principles of various solid state welding process.
- Understand the construction and working principles of various special welding processes.
- Understand the concepts on weld joint design, weldability and testing of weldments.

TEXT BOOKS

- 1. Little R.L., "Welding and welding Technology", Tata McGraw Hill Publishing Co., Ltd., New Delhi, 34th reprint, 2008.
- 2. Parmer R.S., "Welding Engineering and Technology", 1st Edition, Khanna Publishers, New Delhi, 2008.
- 3. Parmer R.S., "Welding Processes and Technology", Khanna Publishers, New Delhi, 1992.

REFERENCES

- 1. AWS- Welding Hand Book. 8th Edition. Vol- 2. "Welding Process"
- 2. Christopher Davis. "Laser Welding- Practical Guide". Jaico Publishing House.
- 3. Davis A.C., "The Science and Practice of Welding", Cambridge University Press, Cambridge, 1993
- 4. Nadkarni S.V. "Modern Arc Welding Technology", Oxford IBH Publishers, 1st Edition, 2005.
- 5. Schwartz M.M. "Metals Joining Manual". McGraw Hill Books, 1979.
- 6. Tylecote R.F. "The Solid Phase Welding of Metals". Edward Arnold Publishers Ltd. London.

ME8096

GAS DYNAMICS AND JET PROPULSION

OBJECTIVES:

- To understand the basic difference between incompressible and compressible flow.
- To understand the phenomenon of shock waves and its effect on flow. To gain some basic knowledge about jet propulsion and Rocket Propulsion. (Use of Standard Gas Tables permitted)

UNIT I BASIC CONCEPTS AND ISENTROPIC FLOWS

Energy and momentum equations of compressible fluid flows – Stagnation states, Mach waves and Mach cone – Effect of Mach number on compressibility – Isentropic flow through variable ducts – Nozzle and Diffusers

UNIT II FLOW THROUGH DUCTS

Flows through constant area ducts with heat transfer (Rayleigh flow) and Friction (Fanno flow) – variation of flow properties.

TOTAL: 45 PERIODS

9

9

С

3

Ρ

0

Т 0

L

UNIT III NORMAL AND OBLIQUE SHOCKS

Governing equations – Variation of flow parameters across the normal and oblique shocks – Prandtl – Meyer relations – Applications.

UNIT IV JET PROPULSION

Theory of jet propulsion – Thrust equation – Thrust power and propulsive efficiency – Operating principle, cycle analysis and use of stagnation state performance of ram jet, turbojet, turbofan and turbo prop engines.

UNIT V SPACE PROPULSION

Types of rocket engines – Propellants-feeding systems – Ignition and combustion – Theory of rocket propulsion – Performance study – Staging – Terminal and characteristic velocity – Applications – space flights.

OUTCOMES:

Upon the completion of this course the students will be able to

- CO1 Apply the concept of compressible flows in variable area ducts.
- CO2 Apply the concept of compressible flows in constant area ducts.
- CO3 examine the effect of compression and expansion waves in compressible flow.
- CO4 use the concept of gas dynamics in Jet Propulsion.
- CO5 apply the concept of gas dynamics in Space Propulsion.

TEXT BOOKS:

- 1. Anderson, J.D., "Modern Compressible flow", 3rd Edition, McGraw Hill, 2012.
- 2. Yahya, S.M. "Fundamentals of Compressible Flow", New Age International (P) Limited, New Delhi, 2002.

REFERENCES:

- 1. Cohen. H., G.E.C. Rogers and Saravanamutto, "Gas Turbine Theory", Longman Group Ltd., 1980
- 2. Ganesan. V., "Gas Turbines", Tata McGraw Hill Publishing Co., New Delhi, 2010.
- 3. Shapiro. A.H.," Dynamics and Thermodynamics of Compressible fluid Flow", John wiley, New York, 1953.
- 4. Sutton. G.P., "Rocket Propulsion Elements", John wiley, New York, 2010,.
- 5. Zucrow. N.J., "Principles of Jet Propulsion and Gas Turbines", John Wiley, New York, 1970.

GE8075

INTELLECTUAL PROPERTY RIGHTS

L T P C 3 0 0 3

OBJECTIVE:

• To give an idea about IPR, registration and its enforcement.

UNIT I INTRODUCTION

Introduction to IPRs, Basic concepts and need for Intellectual Property - Patents, Copyrights, Geographical Indications, IPR in India and Abroad – Genesis and Development – the way from WTO to WIPO –TRIPS, Nature of Intellectual Property, Industrial Property, technological Research, Inventions and Innovations – Important examples of IPR.

UNIT II REGISTRATION OF IPRs

Meaning and practical aspects of registration of Copy Rights, Trademarks, Patents, Geographical Indications, Trade Secrets and Industrial Design registration in India and Abroad

10

9

9

UNIT III AGREEMENTS AND LEGISLATIONS

International Treaties and Conventions on IPRs, TRIPS Agreement, PCT Agreement, Patent Act of India, Patent Amendment Act, Design Act, Trademark Act, Geographical Indication Act.

UNIT IV DIGITAL PRODUCTS AND LAW

Digital Innovations and Developments as Knowledge Assets – IP Laws, Cyber Law and Digital Content Protection – Unfair Competition – Meaning and Relationship between Unfair Competition and IP Laws – Case Studies.

UNIT V ENFORCEMENT OF IPRs

Infringement of IPRs, Enforcement Measures, Emerging issues – Case Studies.

OUTCOME:

• Ability to manage Intellectual Property portfolio to enhance the value of the firm.

TEXT BOOKS

- 1. S.V. Satarkar, Intellectual Property Rights and Copy Rights, Ess Ess Publications, New Delhi, 2002.
- 2. V. Scople Vinod, Managing Intellectual Property, Prentice Hall of India pvt Ltd, 2012

REFERENCES

- 1. Deborah E. Bouchoux, "Intellectual Property: The Law of Trademarks, Copyrights, Patents and Trade Secrets", Cengage Learning, Third Edition, 2012.
- 2. Prabuddha Ganguli,"Intellectual Property Rights: Unleashing the Knowledge Economy", McGraw Hill Education, 2011.
- 3. Edited by Derek Bosworth and Elizabeth Webster, The Management of Intellectual Property, Edward Elgar Publishing Ltd., 2013.

GE8073 FUNDAMENTALS OF NANOSCIENCE L T P C

OBJECTIVE:

To learn about basis of nanomaterial science, preparation method, types and application

UNIT I INTRODUCTION

Nanoscale Science and Technology- Implications for Physics, Chemistry, Biology and Engineering-Classifications of nanostructured materials- nano particles- quantum dots, nanowires-ultra-thinfilmsmultilayered materials. Length Scales involved and effect on properties: Mechanical, Electronic, Optical, Magnetic and Thermal properties. Introduction to properties and motivation for study (qualitative only).

UNIT II GENERAL METHODS OF PREPARATION

Bottom-up Synthesis-Top-down Approach: Co-Precipitation, Ultrasonication, Mechanical Milling, Colloidal routes, Self-assembly, Vapour phase deposition, MOCVD, Sputtering, Evaporation, Molecular Beam Epitaxy, Atomic Layer Epitaxy, MOMBE.

UNIT III NANOMATERIALS

Nanoforms of Carbon - Buckminster fullerene- graphene and carbon nanotube, Single wall carbon Nanotubes (SWCNT) and Multi wall carbon nanotubes (MWCNT)- methods of synthesis(arc-growth, laser ablation, CVD routes, Plasma CVD), structure-property Relationships applications- Nanometal oxides-ZnO, TiO2,MgO, ZrO2, NiO, nanoalumina, CaO, AgTiO2, Ferrites, Nanoclays-

10

7

9

TOTAL :45 PERIODS

12

9

3003

UNIT IV CHARACTERIZATION TECHNIQUES

X-ray diffraction technique, Scanning Electron Microscopy - environmental techniques, Transmission Electron Microscopy including high-resolution imaging, Surface Analysis techniques- AFM, SPM, STM, SNOM, ESCA, SIMS-Nanoindentation.

UNIT V APPLICATIONS

NanoInfoTech: Information storage- nanocomputer, molecular switch, super chip, nanocrystal, Nanobiotechlogy: nanoprobes in medical diagnostics and biotechnology, Nano medicines, Targetted drug delivery, Bioimaging - Micro Electro Mechanical Systems (MEMS), Nano Electro Mechanical Systems (NEMS)- Nanosensors, nano crystalline silver for bacterial inhibition, Nanoparticles for sunbarrier products - In Photostat, printing, solar cell, battery.

OUTCOMES:

- Will familiarize about the science of nanomaterials
- Will demonstrate the preparation of nanomaterials
- Will develop knowledge in characteristic nanomaterial

TEXT BOOKS :

- 1. A.S. Edelstein and R.C. Cammearata, eds., "Nanomaterials: Synthesis, Properties and Applications", Institute of Physics Publishing, Bristol and Philadelphia, 1996.
- 2. N John Dinardo, "Nanoscale Characterization of surfaces & Interfaces", 2nd edition, Weinheim Cambridge, Wiley-VCH, 2000.

REFERENCES:

- 1. G Timp, "Nanotechnology", AIP press/Springer, 1999.
- 2. Akhlesh Lakhtakia, "The Hand Book of Nano Technology, Nanometer Structure, Theory, Modeling and Simulations". Prentice-Hall of India (P) Ltd, New Delhi, 2007.

ME8071	REFRIGERATION AND AIR CONDITIONING	L	Т	Ρ	С
		3	0	0	3

OBJECTIVES:

- To understand the underlying principles of operations in different Refrigeration & Air conditioning systems and components.
- To provide knowledge on design aspects of Refrigeration & Air conditioning systems

UNIT I INTRODUCTION

Introduction to Refrigeration - Unit of Refrigeration and C.O.P.– Ideal cycles- Refrigerants Desirable properties – Classification - Nomenclature - ODP & GWP.

UNIT II VAPOUR COMPRESSION REFRIGERATION SYSTEM

Vapor compression cycle : p-h and T-s diagrams - deviations from theoretical cycle – subcooling and super heating- effects of condenser and evaporator pressure on COP- multipressure system - low temperature refrigeration - Cascade systems – problems. Equipments: Type of Compressors, Condensers, Expansion devices, Evaporators.

7

9

9

UNIT III OTHER REFRIGERATION SYSTEMS

Working principles of Vapour absorption systems and adsorption cooling systems – Steam jet refrigeration- Ejector refrigeration systems- Thermoelectric refrigeration- Air refrigeration - Magnetic - Vortex and Pulse tube refrigeration systems.

UNIT IV PSYCHROMETRIC PROPERTIES AND PROCESSES

Properties of moist Air-Gibbs Dalton law, Specific humidity, Dew point temperature, Degree of saturation, Relative humidity, Enthalpy, Humid specific heat, Wet bulb temperature Thermodynamic wet bulb temperature, Psychrometric chart; Psychrometric of air-conditioning processes, mixing of air streams.

UNIT V AIR CONDITIONING SYSTEMS AND LOAD ESTIMATION

Air conditioning loads: Outside and inside design conditions; Heat transfer through structure, Solar radiation, Electrical appliances, Infiltration and ventilation, internal heat load; Apparatus selection; fresh air load, human comfort & IAQ principles, effective temperature & chart, calculation of summer & winter air conditioning load; Classifications, Layout of plants; Air distribution system; Filters; Air Conditioning Systems with Controls: Temperature, Pressure and Humidity sensors, Actuators & Safety controls.

TOTAL: 45 PERIODS

OUTCOMES:

Upon the completion of this course the students will be able to

- CO1 Explain the basic concepts of Refrigeration
- CO2 Explain the Vapor compression Refrigeration systems and to solve problems
- CO3 Discuss the various types of Refrigeration systems
- CO4 Calculate the Psychrometric properties and its use in psychrometric processes
- CO5 Explain the concepts of Air conditioning and to solve problems

TEXT BOOK:

1. Arora, C.P., "Refrigeration and Air Conditioning", 3rd edition, McGraw Hill, New Delhi, 2010.

REFERENCES:

- 1. ASHRAE Hand book, Fundamentals, 2010
- 2. Jones W.P., "Air conditioning engineering", 5th edition, Elsevier Butterworth-Heinemann, 2007
- 3. Roy J. Dossat, "Principles of Refrigeration", 4th edition, Pearson Education Asia, 2009.
- 4. Stoecker, W.F. and Jones J. W., "Refrigeration and Air Conditioning", McGraw Hill, New Delhi, 1986.

9

9

9

9

9

RENEWABLE SOURCES OF ENERGY

OBJECTIVE:

• At the end of the course, the students are expected to identify the new methodologies / technologies for effective utilization of renewable energy sources.

UNIT I INTRODUCTION

World Energy Use – Reserves of Energy Resources – Environmental Aspects of Energy Utilisation – Renewable Energy Scenario in Tamil nadu, India and around the World – Potentials - Achievements / Applications – Economics of renewable energy systems.

UNIT II SOLAR ENERGY

Solar Radiation – Measurements of Solar Radiation - Flat Plate and Concentrating Collectors – Solar direct Thermal Applications – Solar thermal Power Generation - Fundamentals of Solar Photo Voltaic Conversion – Solar Cells – Solar PV Power Generation – Solar PV Applications.

UNIT III WIND ENERGY

Wind Data and Energy Estimation – Types of Wind Energy Systems – Performance – Site Selection – Details of Wind Turbine Generator – Safety and Environmental Aspects

UNIT IV BIO - ENERGY

Biomass direct combustion – Biomass gasifiers – Biogas plants – Digesters – Ethanol production – Bio diesel – Cogeneration - Biomass Applications

UNIT V OTHER RENEWABLE ENERGY SOURCES

Tidal energy – Wave Energy – Open and Closed OTEC Cycles – Small Hydro-Geothermal Energy – Hydrogen and Storage - Fuel Cell Systems – Hybrid Systems.

TOTAL : 45 PERIODS

OUTCOMES:

Upon the completion of this course the students will be able to

- CO1 Discuss the importance and Economics of renewable Energy
- CO2 Discuss the method of power generation from Solar Energy
- CO3 Discuss the method of power generation from Wind Energy
- CO4 Explain the method of power generation from Bio Energy
- CO5 Explain the Tidal energy, Wave Energy, OTEC, Hydro energy, Geothermal Energy, Fuel Cells and Hybrid Systems.

TEXT BOOKS:

- 1. Rai. G.D., "Non Conventional Energy Sources", Khanna Publishers, New Delhi, 2011.
- 2. Twidell, J.W. & Weir, A., "Renewable Energy Sources", EFN Spon Ltd., UK, 2006.

REFERENCES:

- 1. Chetan Singh Solanki, Solar Photovoltaics, "Fundamentals, Technologies and Applications", PHI Learning Private Limited, New Delhi, 2015.
- 2. David M. Mousdale "Introduction to Biofuels", CRC Press, Taylor & Francis Group, USA 2017
- 3. Freris. L.L., "Wind Energy Conversion Systems", Prentice Hall, UK, 1990.
- 4. Godfrey Boyle, "Renewable Energy, Power for a Sustainable Future", Oxford University Press, U.K., 2012.
- 5. Johnson Gary, L. "Wind Energy Systems", Prentice Hall, New York, 1985

ME8072

03

Ρ

LT

0

3

С

QUALITY CONTROL AND RELIABILITY ENGINEERING L T Ρ С

0 3 0 3

OBJECTIVES:

- To introduce the concept of SQC
- To understand process control and acceptance sampling procedure and their application.
- To learn the concept of reliability.

UNIT I INTRODUCTION AND PROCESS CONTROL FOR VARIABLES

Introduction, definition of quality, basic concept of quality, definition of SQC, benefits and limitation of SQC, Quality assurance, Quality control: Quality cost-Variation in process causes of variation -Theory of control chart- uses of control chart -X chart, R chart and chart - process capability process capability studies and simple problems. Six sigma concepts

PROCESS CONTROL FOR ATTRIBUTES UNIT II

Control chart for attributes -control chart for non conformings- p chart and np chart - control chart for nonconformities- C and U charts. State of control and process out of control identification in charts, pattern study.

ACCEPTANCE SAMPLING UNIT III

Lot by lot sampling - types - probability of acceptance in single, double, multiple sampling techniques - O.C. curves - producer's Risk and consumer's Risk. AQL, LTPD, AOQL concepts-standard sampling plans for AQL and LTPD- uses of standard sampling plans.

UNIT IV LIFE TESTING - RELIABILITY

Life testing - Objective - failure data analysis, Mean failure rate, mean time to failure, mean time between failure, hazard rate - Weibull model, system reliability, series, parallel and mixed configuration - simple problems. Maintainability and availability - simple problems. Acceptance sampling based on reliability test - O.C Curves.

QUALITY AND RELIABILITY UNIT V

Reliability improvements - techniques- use of Pareto analysis - design for reliability - redundancy unit and standby redundancy - Optimization in reliability - Product design - Product analysis -Product development-Product life cycles.

Note: Use of approved statistical table permitted in the examination.

TOTAL: 45 PERIODS

OUTCOMES:

Upon the completion of this course the students will be able to

- CO1 Summarize the concept of Quality and Process control for variables
- CO2 Apply the process control for attributes
- CO3 Explain the concept of sampling and to solve problems
- CO4 Explain the concept of Life testing
- Explain the concept Reliability and techniques involved CO5

TEXT BOOKS:

- 1. Douglas.C. Montgomery, "Introduction to Statistical quality control", 7th edition, John Wiley 2012.
- 2. Srinath. L.S., "Reliability Engineering", Affiliated East west press, 2008.

ME8098

9

9

9

9

REFERENCES:

- 1. Besterfield D.H., "Quality Control", Prentice Hall, 2013.
- 2. Connor, P.D.T.O., "Practical Reliability Engineering", John Wiley, 2012
- 3. Danny Samson, "Manufacturing & Operations Strategy", Prentice Hall, 1991
- 4. Grant, Eugene .L "Statistical Quality Control", McGraw-Hill, 2017
- 5. Gupta. R.C, "Statistical Quality control", Khanna Publishers, 2001.

ME8073 UNCONVENTIONAL MACHINING PROCESSES С т

OBJECTIVE:

• To learn about various unconventional machining processes, the various process parameters and their influence on performance and their applications

INTRODUCTION AND MECHANICAL ENERGY BASED PROCESSES UNIT I 9

Unconventional machining Process – Need – classification – merits, demerits and applications. Abrasive Jet Machining - Water Jet Machining - Abrasive Water Jet Machining - Ultrasonic Machining. (AJM, WJM, AWJM and USM). Working Principles - equipment used - Process parameters – MRR- Applications.

UNIT II THERMAL AND ELECTRICAL ENERGY BASED PROCESSES

Electric Discharge Machining (EDM) - Wire cut EDM - Working Principle-equipments-Process Parameters-Surface Finish and MRR- electrode / Tool - Power and control Circuits-Tool Wear -Dielectric - Flushing - Applications, Laser Beam machining and drilling, (LBM), plasma, Arc machining (PAM) and Electron Beam Machining (EBM). Principles - Equipment -Types - Beam control techniques - Applications.

CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSES UNIT III 9

Chemical machining and Electro-Chemical machining (CHM and ECM)- Etchants - Maskant techniques of applying maskants - Process Parameters - Surface finish and MRR-Applications. Principles of ECM- equipments-Surface Roughness and MRR Electrical circuit-Process Parameters-ECG and ECH - Applications.

UNIT IV **ADVANCED NANO FINISHING PROCESSES**

Abrasive flow machining, chemo-mechanical polishing, magnetic abrasive finishing, magneto rheological finishing, magneto rheological abrasive flow finishing their working principles, equipments, effect of process parameters, applications, advantages and limitations.

UNIT V RECENT TRENDS IN NON-TRADITIONAL MACHINING PROCESSES

Recent developments in non-traditional machining processes, their working principles, equipments, effect of process parameters, applications, advantages and limitations. Comparison of non-traditional machining processes.

OUTCOMES:

Upon the completion of this course the students will be able to

- CO1 Explain the need for unconventional machining processes and its classification
- CO2 Compare various thermal energy and electrical energy based unconventional machining processes.
- CO3 Summarize various chemical and electro-chemical energy based unconventional machining processes.
- CO4 Explain various nano abrasives based unconventional machining processes.
- CO5 Distinguish various recent trends based unconventional machining processes.

9

9

9

TOTAL: 45 PERIODS

3

0

3

TEXT BOOKS:

- 1. Vijay.K. Jain "Advanced Machining Processes" Allied Publishers Pvt. Ltd., New Delhi, 2007
- 2. Pandey P.C. and Shan H.S. "Modern Machining Processes" Tata McGraw-Hill, New Delhi, 2007.

REFERENCES:

- 1. Benedict. G.F. "Nontraditional Manufacturing Processes", Marcel Dekker Inc., New York, 1987.
- 2. Mc Geough, "Advanced Methods of Machining", Chapman and Hall, London, 1998.
- 3. Paul De Garmo, J.T.Black, and Ronald. A.Kohser, "Material and Processes in Manufacturing" Prentice Hall of India Pvt. Ltd., 8thEdition, New Delhi, 2001.

MG8491	OPERATIONS RESEARCH	LTPC
		3003

OBJECTIVE:

• To provide knowledge and training in using optimization techniques under limited resources for the engineering and business problems.

UNIT I LINEAR MODELS

The phase of an operation research study - Linear programming - Graphical method- Simplex algorithm – Duality formulation – Sensitivity analysis.

UNIT II TRANSPORTATION MODELS AND NETWORK MODELS

Transportation Assignment Models - Traveling Salesman problem-Networks models - Shortest route – Minimal spanning tree – Maximum flow models – Project network – CPM and PERT networks - Critical path scheduling - Sequencing models.

UNIT III **INVENTORY MODELS**

Inventory models - Economic order quantity models - Quantity discount models Stochastic inventory models – Multi product models – Inventory control models in practice.

UNIT IV QUEUEING MODELS

Queueing models - Queueing systems and structures – Notation parameter – Single server and multi server models - Poisson input - Exponential service - Constant rate service - Infinite population – Simulation.

UNIT V **DECISION MODELS**

Decision models - Game theory - Two person zero sum games - Graphical solution- Algebraic solution- Linear Programming solution - Replacement models - Models based on service life -Economic life- Single / Multi variable search technique - Dynamic Programming - Simple Problem.

TOTAL: 45 PERIODS

OUTCOME:

• Upon completion of this course, the students can able to use the optimization techniques for use engineering and Business problems

TEXT BOOK:

- 1. Hillier and Libeberman, "Operations Research", Holden Day, 2005
- 2. Taha H.A., "Operations Research", Sixth Edition, Prentice Hall of India, 2003.

10

15

8

6

REFERENCES:

- 1. Bazara M.J., Jarvis and Sherali H., "Linear Programming and Network Flows", John Wiley, 2009.
- 2. Budnick F.S., "Principles of Operations Research for Management", Richard D Irwin, 1990.
- 3. Philip D.T. and Ravindran A., "Operations Research", John Wiley, 1992.
- 4. Shennoy G.V. and Srivastava U.K., "Operation Research for Management", Wiley Eastern, 1994.
- 5. Tulsian and Pasdey V., "Quantitative Techniques", Pearson Asia, 2002.

MF8071

ADDITIVE MANUFACTURING

L T P C 3 0 0 3

OBJECTIVES:

- To know the principle, methods, possibilities and limitations as well as environmental effects of Additive Manufacturing technologies.
- To be familiar with the characteristics of the different materials those are used in Additive Manufacturing technologies.

UNIT I INTRODUCTION

Overview – Need - Development of Additive Manufacturing Technology -Principle – AM Process Chain- Classification –Rapid Prototyping- Rapid Tooling – Rapid Manufacturing – Applications-Benefits –Case studies.

UNIT II DESIGN FOR ADDITIVE MANUFACTURING

Design tools: Data processing - CAD model preparation – Part orientation and support structure generation – Model slicing –Tool path generation- Design for Additive Manufacturing: Concepts and objectives- AM unique capabilities – DFAM for part quality improvement- Customised design and fabrication for medical applications.

UNIT IIIPHOTOPOLYMERIZATION AND POWDER BED FUSION PROCESSES9Photo polymerization: SLA-Photo curable materials – Process - Advantages and Applications. Powder9Bed Fusion: SLS-Process description – powder fusion mechanism – Process Parameters9– Typical Materials and Application. Electron Beam Melting.9

UNIT IV EXTRUSION BASED AND SHEET LAMINATION PROCESSES

Extrusion Based System: FDM-Introduction – Basic Principle – Materials – Applications and Limitations – Bioextrusion. Sheet Lamination Process:LOM- Gluing or Adhesive bonding – Thermal bonding.

UNIT V PRINTING PROCESSES AND BEAM DEPOSITION PROCESSES

Droplet formation technologies – Continuous mode – Drop on Demand mode – Three Dimensional Printing – Advantages – Bioplotter - Beam Deposition Process:LENS- Process description – Material delivery – Process parameters – Materials – Benefits – Applications.

TOTAL: 45 PERIODS

9

9

9

OUTCOME:

• On completion of this course, students will learn about a working principle and construction of Additive Manufacturing technologies, their potential to support design and manufacturing, modern development in additive manufacturing process and case studies relevant to mass customized manufacturing.

TEXT BOOKS:

- 1 Chua C.K., Leong K.F., and Lim C.S., "Rapid prototyping: Principles and applications", Third edition, World Scientific Publishers, 2010.
- 2 Ian Gibson, David W.Rosen, Brent Stucker "Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing" Springer, 2010.

REFERENCES:

- 1 Andreas Gebhardt "Understanding Additive Manufacturing: Rapid Prototyping, Rapid Manufacturing" Hanser Gardner Publication 2011.
- 2 Kamrani A.K. and Nasr E.A., "Rapid Prototyping: Theory and practice", Springer, 2006.
- 3 Liou L.W. and Liou F.W., "Rapid Prototyping and Engineering applications : A tool box for prototype development", CRC Press, 2007.
- 4 Tom Page "Design for Additive Manufacturing" LAP Lambert Academic Publishing, 2012.

GE8077 TOTAL QUALITY MANAGEMENT L T P C

OBJECTIVE:

• To facilitate the understanding of Quality Management principles and process.

UNIT I INTRODUCTION

Introduction - Need for quality - Evolution of quality - Definitions of quality - Dimensions of product and service quality - Basic concepts of TQM - TQM Framework - Contributions of Deming, Juran and Crosby - Barriers to TQM - Customer focus - Customer orientation, Customer satisfaction, Customer complaints, Customer retention.

UNIT II TQM PRINCIPLES

Leadership - Quality Statements, Strategic quality planning, Quality Councils - Employee involvement - Motivation, Empowerment, Team and Teamwork, Recognition and Reward, Performance appraisal - Continuous process improvement - PDCA cycle, 5S, Kaizen - Supplier partnership - Partnering, Supplier selection, Supplier Rating.

UNIT III TQM TOOLS AND TECHNIQUES I

The seven traditional tools of quality - New management tools - Six sigma: Concepts, Methodology, applications to manufacturing, service sector including IT - Bench marking - Reason to bench mark, Bench marking process - FMEA - Stages, Types.

UNIT IV TQM TOOLS AND TECHNIQUES II

Quality Circles - Cost of Quality - Quality Function Deployment (QFD) - Taguchi quality loss function - TPM - Concepts, improvement needs - Performance measures.

UNIT V QUALITY MANAGEMENT SYSTEM

Introduction—Benefits of ISO Registration—ISO 9000 Series of Standards—Sector-Specific Standards—AS 9100, TS16949 and TL 9000-- ISO 9001 Requirements—Implementation—Documentation—Internal Audits—Registration--ENVIRONMENTAL MANAGEMENT SYSTEM:

9

3003

9 20

9

9

Introduction—ISO 14000 Series Standards—Concepts of ISO 14001—Requirements of ISO 14001— Benefits of EMS.

TOTAL: 45 PERIODS

OUTCOME:

• The student would be able to apply the tools and techniques of quality management to manufacturing and services processes.

TEXT BOOK:

1. Dale H.Besterfiled, Carol B.Michna, Glen H. Besterfield, Mary B.Sacre, Hemant Urdhwareshe and Rashmi Urdhwareshe, "Total Quality Management", Pearson Education Asia, Revised Third Edition, Indian Reprint, Sixth Impression, 2013.

REFERENCES:

- 1. James R. Evans and William M. Lindsay, "The Management and Control of Quality", 8th Edition, First Indian Edition, Cengage Learning, 2012.
- 2. Janakiraman. B and Gopal .R.K., "Total Quality Management Text and Cases", Prentice Hall (India) Pvt. Ltd., 2006.
- 3. Suganthi L and Anand Samuel, "Total Quality Management", Prentice Hall (India) Pvt. Ltd., 2006.
- 4. ISO 9001-2015 standards

ME8099

ROBOTICS

OBJECTIVES:

- To understand the functions of the basic components of a Robot.
- To study the use of various types of End of Effectors and Sensors
- To impart knowledge in Robot Kinematics and Programming
- To learn Robot safety issues and economics.

UNIT I FUNDAMENTALS OF ROBOT

Robot - Definition - Robot Anatomy - Co ordinate Systems, Work Envelope Types and Classification- Specifications-Pitch, Yaw, Roll, Joint Notations, Speed of Motion, Pay Load- Robot Parts and their Functions-Need for Robots-Different Applications.

UNIT II ROBOT DRIVE SYSTEMS AND END EFFECTORS

Pneumatic Drives-Hydraulic Drives-Mechanical Drives-Electrical Drives-D.C. Servo Motors, Stepper Motors, A.C. Servo Motors-Salient Features, Applications and Comparison of all these Drives, End Effectors-Grippers-Mechanical Grippers, Pneumatic and Hydraulic- Grippers, Magnetic Grippers, Vacuum Grippers; Two Fingered and Three Fingered Grippers; Internal Grippers and External Grippers; Selection and Design Considerations.

UNIT III SENSORS AND MACHINE VISION

Requirements of a sensor, Principles and Applications of the following types of sensors- Position sensors - Piezo Electric Sensor, LVDT, Resolvers, Optical Encoders, pneumatic Position Sensors, Range Sensors Triangulations Principles, Structured, Lighting Approach, Time of Flight, Range Finders, Laser Range Meters, Touch Sensors, binary Sensors., Analog Sensors, Wrist Sensors, Compliance Sensors, Slip Sensors, Camera, Frame Grabber, Sensing and Digitizing Image Data-Signal Conversion, Image Storage, Lighting Techniques, Image Processing and Analysis-Data Reduction, Segmentation, Feature Extraction, Object Recognition, Other Algorithms, Applications-Inspection, Identification, Visual Serving and Navigation.

9 nc

9

Ρ

0

L

3

Т

0

С

3

UNIT IV ROBOT KINEMATICS AND ROBOT PROGRAMMING

Forward Kinematics, Inverse Kinematics and Difference; Forward Kinematics and Reverse Kinematics of manipulators with Two, Three Degrees of Freedom (in 2 Dimension), Four Degrees of freedom (in 3 Dimension) Jacobians, Velocity and Forces-Manipulator Dynamics, Trajectory Generator, Manipulator Mechanism Design-Derivations and problems. Lead through Programming, Robot programming Languages-VAL Programming-Motion Commands, Sensor Commands, End Effector commands and simple Programs.

UNIT V IMPLEMENTATION AND ROBOT ECONOMICS

RGV, AGV; Implementation of Robots in Industries-Various Steps; Safety Considerations for Robot Operations - Economic Analysis of Robots.

OUTCOMES:

Upon the completion of this course the students will be able to

- CO1 Explain the concepts of industrial robots, classification, specifications and coordinate systems. Also summarize the need and application of robots in different sectors.
- CO2 Illustrate the different types of robot drive systems as well as robot end effectors.
- CO3 Apply the different sensors and image processing techniques in robotics to improve the ability of robots.
- CO4 Develop robotic programs for different tasks and familiarize with the kinematics motions of robot.
- CO5 Examine the implementation of robots in various industrial sectors and interpolate the economic analysis of robots.

TEXT BOOKS:

- 1. Groover M.P., "Industrial Robotics -Technology Programming and Applications", McGraw Hill, 2012.
- 2. Klafter R.D., Chmielewski T.A and Negin M., "Robotic Engineering An Integrated Approach", Prentice Hall, 2003.

REFERENCES:

- 1. Craig J.J., "Introduction to Robotics Mechanics and Control", Pearson Education, 2008.
- 2. Deb S.R., "Robotics Technology and Flexible Automation" Tata McGraw Hill Book Co., 2013.
- 3. Fu.K.S., Gonzalz R.C. and Lee C.S.G., "Robotics Control, Sensing, Vision and Intelligence", McGraw Hill Book Co., 1987.
- 4. Janakiraman P.A., "Robotics and Image Processing", Tata McGraw Hill, 1995.
- 5. Koren Y., "Robotics for Engineers", Mc Graw Hill Book Co., 1992.

ME8095 DESIGN OF JIGS, FIXTURES AND PRESS TOOLS L T P C

0 0 3

9

3

OBJECTIVES:

- To understand the functions and design principles of Jigs, fixtures and press tools
- To gain proficiency in the development of required views of the final design.

UNIT I LOCATING AND CLAMPING PRINCIPLES:

Objectives of tool design- Function and advantages of Jigs and fixtures – Basic elements – principles of location – Locating methods and devices – Redundant Location – Principles of clamping – Mechanical actuation – pneumatic and hydraulic actuation Standard parts – Drill bushes and Jig buttons – Tolerances and materials used.

9

TOTAL: 45 PERIODS

UNIT II JIGS AND FIXTURES

Design and development of jigs and fixtures for given component- Types of Jigs – Post, Turnover, Channel, latch, box, pot, angular post jigs – Indexing jigs – General principles of milling, Lathe, boring, broaching and grinding fixtures – Assembly, Inspection and Welding fixtures – Modular fixturing systems- Quick change fixtures.

UNIT III PRESS WORKING TERMINOLOGIES AND ELEMENTS OF CUTTING DIES 9

Press Working Terminologies - operations – Types of presses – press accessories – Computation of press capacity – Strip layout – Material Utilization – Shearing action – Clearances – Press Work Materials – Center of pressure- Design of various elements of dies – Die Block – Punch holder, Die set, guide plates – Stops – Strippers – Pilots – Selection of Standard parts – Design and preparation of four standard views of simple blanking, piercing, compound and progressive dies.

UNIT IV BENDING AND DRAWING DIES

Difference between bending and drawing – Blank development for above operations – Types of Bending dies – Press capacity – Spring back – knockouts – direct and indirect – pressure pads – Ejectors – Variables affecting Metal flow in drawing operations – draw die inserts – draw beads- ironing – Design and development of bending, forming, drawing, reverse redrawing and combination dies – Blank development for axisymmetric, rectangular and elliptic parts – Single and double action dies.

UNIT V FORMING TECHNIQUES AND EVALUATION

Bulging, Swaging, Embossing, coining, curling, hole flanging, shaving and sizing, assembly, fine Blanking dies – recent trends in tool design- computer Aids for sheet metal forming Analysis – basic introduction - tooling for numerically controlled machines- setup reduction for work holding – Single minute exchange of dies – Poka Yoke.

TOTAL: 45 PERIODS

Note: (Use of P S G Design Data Book is permitted in the University examination)

OUTCOMES:

Upon the completion of this course the students will be able to

- CO1 Summarize the different methods of Locating Jigs and Fixtures and Clamping principles
- CO2 Design and develop jigs and fixtures for given component
- CO3 Discuss the press working terminologies and elements of cutting dies
- CO4 Distinguish between Bending and Drawing dies.
- CO5 Discuss the different types of forming techniques

TEXT BOOKS:

- 1. Joshi, P.H. "Jigs and Fixtures", Second Edition, Tata McGraw Hill Publishing Co., Ltd., New Delhi, 2010.
- 2. Joshi P.H "Press tools Design and Construction", wheels publishing, 1996

REFERENCES:

- 1. ASTME Fundamentals of Tool Design Prentice Hall of India.
- 2. Design Data Hand Book, PSG College of Technology, Coimbatore.
- 3. Donaldson, Lecain and Goold "Tool Design", 5th Edition, Tata McGraw Hill, 2017.
- 4. Hoffman "Jigs and Fixture Design", Thomson Delmar Learning, Singapore, 2004.
- 5. Kempster, "Jigs and Fixture Design", Third Edition, Hoddes and Stoughton, 1974.
- 6. Venkataraman. K., "Design of Jigs Fixtures & Press Tools", Tata McGraw Hill, New Delhi, 2005.

9

ME8093

OBJECTIVES:

- To introduce Governing Equations of viscous fluid flows
- To introduce numerical modeling and its role in the field of fluid flow and heat transfer
- To enable the students to understand the various discretization methods, solution procedures and turbulence modeling.
- To create confidence to solve complex problems in the field of fluid flow and heat transfer by using high speed computers.

UNIT I GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

Basics of computational fluid dynamics – Governing equations of fluid dynamics – Continuity, Momentum and Energy equations – Chemical species transport – Physical boundary conditions – Time-averaged equations for Turbulent Flow – Turbulent–Kinetic Energy Equations – Mathematical behaviour of PDEs on CFD - Elliptic, Parabolic and Hyperbolic equations.

UNIT II FINITE DIFFERENCE AND FINITE VOLUME METHODS FOR DIFFUSION 9

Derivation of finite difference equations – Simple Methods – General Methods for first and second order accuracy – Finite volume formulation for steady state One, Two and Three - dimensional diffusion problems –Parabolic equations – Explicit and Implicit schemes – Example problems on elliptic and parabolic equations – Use of Finite Difference and Finite Volume methods.

UNIT III FINITE VOLUME METHOD FOR CONVECTION DIFFUSION

Steady one-dimensional convection and diffusion – Central, upwind differencing schemes properties of discretization schemes – Conservativeness, Boundedness, Transportiveness, Hybrid, Power-law, QUICK Schemes.

UNIT IV FLOW FIELD ANALYSIS

Finite volume methods -Representation of the pressure gradient term and continuity equation – Staggered grid – Momentum equations – Pressure and Velocity corrections – Pressure Correction equation, SIMPLE algorithm and its variants – PISO Algorithms.

UNIT V TURBULENCE MODELS AND MESH GENERATION

Turbulence models, mixing length model, Two equation (k-) models – High and low Reynolds number models – Structured Grid generation – Unstructured Grid generation – Mesh refinement – Adaptive mesh – Software tools.

TOTAL: 45 PERIODS

OUTCOMES:

Upon the completion of this course the students will be able to

- CO1 Derive the governing equations and boundary conditions for Fluid dynamics
- CO2 Analyze Finite difference and Finite volume methods for Diffusion
- CO3 Analyze Finite volume method for Convective diffusion
- CO4 Analyze Flow field problems
- CO5 Explain and solve the Turbulence models and Mesh generation techniques

TEXT BOOKS:

- 1. Ghoshdastidar, P.S., "Computer Simulation of flow and heat transfer", Tata McGraw Hill Publishing Company Ltd., 2017.
- 2. Versteeg, H.K., and Malalasekera, W., "An Introduction to Computational Fluid Dynamics: The finite volume Method", Pearson Education Ltd.Second Edition, 2007.

9

9

9

REFERENCES:

- 1. Anil W. Date "Introduction to Computational Fluid Dynamics" Cambridge University Press, 2005.
- 2. Chung, T.J. "Computational Fluid Dynamics", Cambridge University, Press, 2002.
- 3. Ghoshdastidar P.S., "Heat Transfer", Oxford University Press, 2005
- 4. Muralidhar, K., and Sundararajan, T., "Computational Fluid Flow and Heat Transfer", Narosa Publishing House, New Delhi, 2014.
- 5. Patankar, S.V. "Numerical Heat Transfer and Fluid Flow", Hemisphere Publishing Corporation, 2004

ME8097 NON DESTRUCTIVE TESTING AND EVALUATION L T P C 3 0 0 3

OBJECTIVE:

• To study and understand the various Non Destructive Evaluation and Testing methods, theory and their industrial applications.

UNIT I OVERVIEW OF NDT

NDT Versus Mechanical testing, Overview of the Non Destructive Testing Methods for the detection of manufacturing defects as well as material characterisation. Relative merits and limitations, Various physical characteristics of materials and their applications in NDT., Visual inspection – Unaided and aided.

UNIT II SURFACE NDE METHODS

Liquid Penetrant Testing - Principles, types and properties of liquid penetrants, developers, advantages and limitations of various methods, Testing Procedure, Interpretation of results. Magnetic Particle Testing- Theory of magnetism, inspection materials Magnetisation methods, Interpretation and evaluation of test indications, Principles and methods of demagnetization, Residual magnetism.

UNIT III THERMOGRAPHY AND EDDY CURRENT TESTING (ET)

Thermography- Principles, Contact and non contact inspection methods, Techniques for applying liquid crystals, Advantages and limitation - infrared radiation and infrared detectors, Instrumentations and methods, applications. Eddy Current Testing-Generation of eddy currents, Properties of eddy currents, Eddy current sensing elements, Probes, Instrumentation, Types of arrangement, Applications, advantages, Limitations, Interpretation/Evaluation.

UNIT IV ULTRASONIC TESTING (UT) AND ACOUSTIC EMISSION (AE)

Ultrasonic Testing-Principle, Transducers, transmission and pulse-echo method, straight beam and angle beam, instrumentation, data representation, A/Scan, B-scan, C-scan. Phased Array Ultrasound, Time of Flight Diffraction. Acoustic Emission Technique – Principle, AE parameters, Applications

UNIT V RADIOGRAPHY (RT)

Principle, interaction of X-Ray with matter, imaging, film and film less techniques, types and use of filters and screens, geometric factors, Inverse square, Iaw, characteristics of films - graininess, density, speed, contrast, characteristic curves, Penetrameters, Exposure charts, Radiographic equivalence. Fluoroscopy- Xero-Radiography, Computed Radiography, Computed Tomography

TOTAL : 45 PERIODS

9

9

9

9

OUTCOMES:

Upon the completion of this course the students will be able to

- CO1 Explain the fundamental concepts of NDT
- CO2 Discuss the different methods of NDE
- CO3 Explain the concept of Thermography and Eddy current testing
- CO4 Explain the concept of Ultrasonic Testing and Acoustic Emission
- CO5 Explain the concept of Radiography

TEXT BOOKS:

- 1. Baldev Raj, T.Jayakumar, M.Thavasimuthu "Practical Non-Destructive Testing", Narosa Publishing House, 2014.
- 2. Ravi Prakash, "Non-Destructive Testing Techniques", 1st revised edition, New Age International Publishers, 2010

REFERENCES:

- 1. ASM Metals Handbook, "Non-Destructive Evaluation and Quality Control", American Society of Metals, Metals Park, Ohio, USA, 200, Volume-17.
- ASNT, American Society for Non Destructive Testing, Columbus, Ohio, NDT Handbook, Vol. 1, Leak Testing, Vol. 2, Liquid Penetrant Testing, Vol. 3, Infrared and Thermal Testing Vol. 4, Radiographic Testing, Vol. 5, Electromagnetic Testing, Vol. 6, Acoustic Emission Testing, Vol. 7, Ultrasonic Testing
- 3. Charles, J. Hellier," Handbook of Nondestructive evaluation", McGraw Hill, New York 2001.
- 4. Paul E Mix, "Introduction to Non-destructive testing: a training guide", Wiley, 2nd Edition New Jersey, 2005

ME8092	COMPOSITE MATERIALS AND MECHANICS	L	Т	Ρ	С
		•	~	-	-

3 0 0 3

OBJECTIVES:

- To understand the fundamentals of composite material strength and its mechanical behavior
- Understanding the analysis of fiber reinforced Laminate design for different combinations of plies with different orientations of the fiber.
- Thermo-mechanical behavior and study of residual stresses in Laminates during processing.
- Implementation of Classical Laminate Theory (CLT) to study and analysis for residual stresses in an isotropic layered structure such as electronic chips.

UNIT I INTRODUCTION, LAMINA CONSTITUTIVE EQUATIONS & MANUFACTURING 9 Definition –Need – General Characteristics, Applications. Fibers – Glass, Carbon, Ceramic and Aramid fibers. Matrices – Polymer, Graphite, Ceramic and Metal Matrices – Characteristics of fibers and matrices. Lamina Constitutive Equations: Lamina Assumptions – Macroscopic Viewpoint. Generalized Hooke's Law. Reduction to Homogeneous Orthotropic Lamina – Isotropic limit case, Orthotropic Stiffness matrix (Qij), Typical Commercial material properties, Rule of Mixtures. Generally Orthotropic Lamina – Transformation Matrix, Transformed Stiffness. Manufacturing: Bag Moulding Compression Moulding – Pultrusion – Filament Winding – Other Manufacturing Processes

UNIT II FLAT PLATE LAMINATE CONSTITUTE EQUATIONS

Definition of stress and Moment Resultants. Strain Displacement relations. Basic Assumptions of Laminated anisotropic plates. Laminate Constitutive Equations – Coupling Interactions, Balanced Laminates, Symmetric Laminates, Angle Ply Laminates, Cross Ply Laminates. Laminate Structural Moduli. Evaluation of Lamina Properties from Laminate Tests. Quasi-Isotropic Laminates. Determination of Lamina stresses within Laminates.

UNIT III LAMINA STRENGTH ANALYSIS

Introduction - Maximum Stress and Strain Criteria. Von-Misses Yield criterion for Isotropic Materials. Generalized Hill's Criterion for Anisotropic materials. Tsai-Hill's Failure Criterion for Composites. Tensor Polynomial (Tsai-Wu) Failure criterion. Prediction of laminate Failure

UNIT IV THERMAL ANALYSIS

Assumption of Constant C.T.E's. Modification of Hooke's Law. Modification of Laminate Constitutive Equations. Orthotropic Lamina C.T.E's. C.T.E's for special Laminate Configurations – Unidirectional, Off-axis, Symmetric Balanced Laminates, Zero C.T.E laminates, Thermally Quasi-Isotropic Laminates

UNIT V ANALYSIS OF LAMINATED FLAT PLATES

Equilibrium Equations of Motion. Energy Formulations. Static Bending Analysis. Buckling Analysis. Free Vibrations – Natural Frequencies

OUTCOMES:

Upon the completion of this course the students will be able to

- CO1 Summarize the various types of Fibers, Equations and manufacturing methods for Composite materials
- CO2 Derive Flat plate Laminate equations
- CO3 Analyze Lamina strength
- CO4 Analyze the thermal behavior of Composite laminates
- CO5 Analyze Laminate flat plates

TEXT BOOKS:

- 1. Gibson, R.F., "Principles of Composite Material Mechanics", Second Edition, McGraw-Hill, CRC press in progress, 1994, -.
- 2. Hyer, M.W., "Stress Analysis of Fiber Reinforced Composite Materials", McGraw Hill, 1998

REFERENCES:

- 1. Agarwal, B.D., and Broutman L.J., "Analysis and Performance of Fiber Composites", John Wiley and Sons, New York, 1990.
- 2. Halpin, J.C., "Primer on Composite Materials, Analysis", Technomic Publishing Co., 1984.
- 3. Issac M. Daniel and Ori Ishai, "Engineering Mechanics of Composite Materials", Oxford University Press-2006, First Indian Edition 2007
- 4. Mallick, P.K., Fiber, "Reinforced Composites: Materials, Manufacturing and Design", Maneel Dekker Inc, 1993.
- 5. Mallick, P.K. and Newman, S., (edition), "Composite Materials Technology: Processes and Properties", Hansen Publisher, Munish, 1990.

9

9

9

TOTAL: 45 PERIODS

GE8072 FOUNDATION SKILLS IN INTEGRATED PRODUCT L T P C DEVELOPMENT 3 0 0 3

OBJECTIVES:

- To understand the global trends and development methodologies of various types of products and services
- To conceptualize, prototype and develop product management plan for a new product based on the type of the new product and development methodology integrating the hardware, software, controls, electronics and mechanical systems
- To understand requirement engineering and know how to collect, analyze and arrive at requirements for new product development and convert them in to design specification
- To understand system modeling for system, sub-system and their interfaces and arrive at the optimum system specification and characteristics
- To develop documentation, test specifications and coordinate with various teams to validate and sustain up to the EoL (End of Life) support activities for engineering customer

UNIT I FUNDAMENTALS OF PRODUCT DEVELOPMENT

Global Trends Analysis and Product decision - Social Trends - Technical Trends-Economical Trends - Environmental Trends - Political/Policy Trends - **Introduction to Product Development Methodologies and Management -** Overview of Products and Services - Types of Product Development - Overview of Product Development methodologies - Product Life Cycle – Product Development Planning and Management.

UNIT II REQUIREMENTS AND SYSTEM DESIGN

Requirement Engineering - Types of Requirements - Requirement Engineering - traceability Matrix and Analysis - Requirement Management - **System Design & Modeling -** Introduction to System Modeling - System Optimization - System Specification - Sub-System Design - Interface Design.

UNIT III DESIGN AND TESTING

Conceptualization - Industrial Design and User Interface Design - Introduction to Concept generation Techniques – **Challenges in Integration of Engineering Disciplines** - Concept Screening & Evaluation - **Detailed Design -** Component Design and Verification – **Mechanical, Electronics and Software Subsystems** - High Level Design/Low Level Design of S/W Program - Types of Prototypes, S/W Testing- Hardware Schematic, Component design, Layout and Hardware Testing – **Prototyping -** Introduction to Rapid Prototyping and Rapid Manufacturing - **System Integration, Testing, Certification and Documentation**

UNIT IV SUSTENANCE ENGINEERING AND END-OF-LIFE (EOL) SUPPORT 9 Introduction to Product verification processes and stages - Introduction to Product Validation processes and stages - Product Testing Standards and Certification - Product Documentation - Sustenance -Maintenance and Repair – Enhancements - Product EoL - Obsolescence Management – Configuration Management - EoL Disposal

UNIT VBUSINESS DYNAMICS – ENGINEERING SERVICES INDUSTRY9The Industry - Engineering Services Industry - Product Development in Industry versusAcademia – The IPD Essentials - Introduction to Vertical Specific Product Developmentprocesses -Manufacturing/Purchase and Assembly of Systems - Integration of Mechanical,Embedded and Software Systems – Product Development Trade-offs - Intellectual PropertyRights and Confidentiality – Security and Configuration Management.

9

9

OUTCOMES:

Upon completion of the course, the students will be able to:

- Define, formulate and analyze a problem
- · Solve specific problems independently or as part of a team
- Gain knowledge of the Innovation & Product Development process in the Business Context
- Work independently as well as in teams
- Manage a project from start to finish

TEXTBOOKS:

- Book specially prepared by NASSCOM as per the MoU. 1.
- 2. Karl T Ulrich and Stephen D Eppinger, "Product Design and Development", Tata McGraw Hill, Fifth Edition, 2011.
- John W Newstorm and Keith Davis, "Organizational Behavior", Tata McGraw Hill, 3. Eleventh Edition, 2005.

REFERENCES:

- 1. Hiriyappa B, "Corporate Strategy – Managing the Business", Author House, 2013.
- Peter F Drucker, "People and Performance", Butterworth Heinemann [Elsevier], Oxford, 2. 2004.
- 3. Vinod Kumar Garg and Venkita Krishnan N K, "Enterprise Resource Planning -Concepts", Second Edition, Prentice Hall, 2003.
- Mark S Sanders and Ernest J McCormick, "Human Factors in Engineering and Design", 4. McGraw Hill Education, Seventh Edition, 2013

GE8074

HUMAN RIGHTS

OBJECTIVE:

To sensitize the Engineering students to various aspects of Human Rights.

UNIT I

Human Rights – Meaning, origin and Development. Notion and classification of Rights – Natural, Moral and Legal Rights. Civil and Political Rights, Economic, Social and Cultural Rights; collective / Solidarity Rights.

UNIT II

Evolution of the concept of Human Rights Magana carta – Geneva convention of 1864. Universal Declaration of Human Rights, 1948. Theories of Human Rights.

UNIT III

Theories and perspectives of UN Laws – UN Agencies to monitor and compliance.

UNIT IV

Human Rights in India - Constitutional Provisions / Guarantees.

UNIT V

Human Rights of Disadvantaged People - Women, Children, Displaced persons and Disabled persons, including Aged and HIV Infected People. Implementation of Human Rights - National and State Human Rights Commission – Judiciary – Role of NGO's, Media, Educational Institutions, Social Movements.

TOTAL: 45 PERIODS

9

9

L T PC 3 0 0 3

9

9

OUTCOME :

Engineering students will acquire the basic knowledge of human rights.

REFERENCES:

- 1. Chandra U., "Human Rights", Allahabad Law Agency, Allahabad, 2014.
- 2. Kapoor S.K., "Human Rights under International law and Indian Laws", Central Law Agency, Allahabad, 2014.
- 3. Upendra Baxi, The Future of Human Rights, Oxford University Press, New Delhi.

GE8071

DISASTER MANAGEMENT

LTPC 3 0 0 3

OBJECTIVES:

- To provide students an exposure to disasters, their significance and types.
- To ensure that students begin to understand the relationship between vulnerability, disasters, disaster prevention and risk reduction
- To gain a preliminary understanding of approaches of Disaster Risk Reduction (DRR)
- To enhance awareness of institutional processes in the country and
- To develop rudimentary ability to respond to their surroundings with potential • disaster response in areas where they live, with due sensitivity

UNIT I INTRODUCTION TO DISASTERS

Definition: Disaster, Hazard, Vulnerability, Resilience, Risks – Disasters: Types of disasters – Earthquake, Landslide, Flood, Drought, Fire etc - Classification, Causes, Impacts including social, economic, political, environmental, health, psychosocial, etc.- Differential impacts- in terms of caste, class, gender, age, location, disability - Global trends in disasters: urban disasters, pandemics, complex emergencies, Climate change- Dos and Don'ts during various types of Disasters.

UNIT II APPROACHES TO DISASTER RISK REDUCTION (DRR)

Disaster cycle - Phases, Culture of safety, prevention, mitigation and preparedness community based DRR, Structural- nonstructural measures, Roles and responsibilities of- community, Panchayati Raj Institutions / Urban Local Bodies (PRIs/ULBs), States, Centre, and other stake-holders- Institutional Processess and Framework at State and Central Level-State Disaster Management Authority(SDMA) - Early Warning System - Advisories from Appropriate Agencies.

UNIT III INTER-RELATIONSHIP BETWEEN DISASTERS AND DEVELOPMENT

Factors affecting Vulnerabilities, differential impacts, impact of Development projects such as dams, embankments, changes in Land-use etc.- Climate Change Adaptation- IPCC Scenario and Scenarios in the context of India - Relevance of indigenous knowledge, appropriate technology and local resources.

UNIT IV DISASTER RISK MANAGEMENT IN INDIA

Hazard and Vulnerability profile of India, Components of Disaster Relief: Water, Food, Sanitation, Shelter, Health, Waste Management, Institutional arrangements (Mitigation, Response and Preparedness, Disaster Management Act and Policy - Other related policies, plans, programmes and legislation – Role of GIS and Information Technology Components in Preparedness, Risk Assessment, Response and Recovery Phases of Disaster – Disaster Damage Assessment.

9

9

9

UNIT V DISASTER MANAGEMENT: APPLICATIONS AND CASE STUDIES AND FIELD WORKS

Landslide Hazard Zonation: Case Studies, Earthquake Vulnerability Assessment of Buildings and Infrastructure: Case Studies, Drought Assessment: Case Studies, Coastal Flooding: Storm Surge Assessment, Floods: Fluvial and Pluvial Flooding: Case Studies; Forest Fire: Case Studies, Man Made disasters: Case Studies, Space Based Inputs for Disaster Mitigation and Management and field works related to disaster management.

TOTAL: 45 PERIODS

9

The students will be able to

- Differentiate the types of disasters, causes and their impact on environment and society
- Assess vulnerability and various methods of risk reduction measures as well as mitigation.
- Draw the hazard and vulnerability profile of India, Scenarious in the Indian context, Disaster damage assessment and management.

TEXT BOOKS:

OUTCOMES:

- 1. Gupta Anil K, Sreeja S. Nair. Environmental Knowledge for Disaster Risk Management, NIDM, New Delhi, 2011
- 2. Kapur Anu Vulnerable India: A Geographical Study of Disasters, IIAS and Sage Publishers, New Delhi, 2010.
- 3. Singhal J.P. "Disaster Management", Laxmi Publications, 2010. ISBN-10: 9380386427 ISBN-13: 978-9380386423
- 4. Tushar Bhattacharya, "Disaster Science and Management", McGraw Hill India Education Pvt. Ltd., 2012. **ISBN-10**: 1259007367, **ISBN-13**: 978-1259007361]

REFERENCES

- 1. Govt. of India: Disaster Management Act , Government of India, New Delhi, 2005
- 2. Government of India, National Disaster Management Policy, 2009.

IE8693 PRODUCTION PLANNING AND CONTROL L T P C

3 0 0 3

OBJECTIVES:

- To understand the various components and functions of production planning and control such as work study, product planning, process planning, production scheduling, Inventory Control.
- To know the recent trends like manufacturing requirement Planning (MRP II) and Enterprise Resource Planning (ERP).

UNIT I INTRODUCTION

Objectives and benefits of planning and control-Functions of production control-Types of production- job- batch and continuous-Product development and design-Marketing aspect - Functional aspects- Operational aspect-Durability and dependability aspect aesthetic aspect. Profit consideration- Standardization, Simplification & specialization- Break even analysis-Economics of a new design.

UNIT II WORK STUDY

Method study, basic procedure-Selection-Recording of process - Critical analysis, Development -Implementation - Micro motion and memo motion study – work measurement - Techniques of work measurement - Time study - Production study - Work sampling - Synthesis from standard data -Predetermined motion time standards.

9

UNIT III PRODUCT PLANNING AND PROCESS PLANNING

Product planning-Extending the original product information-Value analysis-Problems in lack of product planning-Process planning and routing-Pre requisite information needed for process planning- Steps in process planning-Quantity determination in batch production-Machine capacity, balancing- Analysis of process capabilities in a multi product system.

UNIT IV **PRODUCTION SCHEDULING**

Production Control Systems-Loading and scheduling-Master Scheduling-Scheduling rules-Gantt charts-Perpetual loading-Basic scheduling problems - Line of balance - Flow production scheduling- Batch production scheduling-Product sequencing - Production Control systems-Periodic batch control-Material requirement planning kanban – Dispatching-Progress reporting and expediting- Manufacturing lead time-Techniques for aligning completion times and due dates.

UNIT V INVENTORY CONTROL AND RECENT TRENDS IN PPC

Inventory control-Purpose of holding stock-Effect of demand on inventories-Ordering procedures. Two bin system - Ordering cycle system-Determination of Economic order quantity and economic lot size- ABC analysis - Recorder procedure-Introduction to computer integrated production planning systems- elements of JUST IN TIME SYSTEMS-Fundamentals of MRP II and ERP.

TOTAL: 45 PERIODS

OUTCOMES:

- Upon completion of this course, the students can able to prepare production planning and control activities such as work study, product planning, production scheduling, Inventory Control.
- They can plan manufacturing requirements manufacturing requirement Planning (MRP II) and Enterprise Resource Planning (ERP).

TEXT BOOKS:

- 1. James. B. Dilworth, "Operations management Design, Planning and Control for manufacturing and services" Mcgraw Hill International edition 1992.
- 2. Martand Telsang, "Industrial Engineering and Production Management", First edition, S. Chand and Company, 2000.

REFERENCES:

- 1. Chary. S.N., "Theory and Problems in Production & Operations Management", Tata McGraw Hill, 1995.
- 2. Elwood S.Buffa, and Rakesh K.Sarin, "Modern Production / Operations Management", 8th Edition John Wiley and Sons, 2000.
- 3. Jain. K.C. & Aggarwal. L.N., "Production Planning Control and Industrial Management", Khanna Publishers, 1990.
- 4. Kanishka Bedi, "Production and Operations management", 2nd Edition, Oxford university press, 2007.
- 5. Melynk, Denzler, "Operations management A value driven approach" Irwin Mcgraw hill.
- 6. Norman Gaither, G. Frazier, "Operations Management" 9th Edition, Thomson learning IE, 2007
- 7. Samson Eilon, "Elements of Production Planning and Control", Universal Book Corpn. 1984
- 8. Upendra Kachru, "Production and Operations Management Text and cases" 1st Edition, Excel books 2007

9

OBJECTIVE:

MG8091

 To develop and strengthen entrepreneurial guality and motivation in students and to impart basic entrepreneurial skills and understanding to run a business efficiently and effectively.

UNIT I **ENTREPRENEURSHIP**

Entrepreneur _ Types of Entrepreneurs – Difference between Entrepreneur and Intrapreneur Entrepreneurship in Economic Growth, Factors Affecting Entrepreneurial Growth.

UNIT II MOTIVATION

Major Motives Influencing an Entrepreneur - Achievement Motivation Training, Self Rating, Business Games, Thematic Apperception Test - Stress Management, Entrepreneurship Development Programs - Need, Objectives.

UNIT III **BUSINESS**

Small Enterprises – Definition, Classification – Characteristics, Ownership Structures – Project Formulation – Steps involved in setting up a Business – identifying, selecting a Good Business opportunity, Market Survey and Research, Techno Economic Feasibility Assessment – Preparation of Preliminary Project Reports - Project Appraisal - Sources of Information - Classification of Needs and Agencies.

UNIT IV FINANCING AND ACCOUNTING

Need – Sources of Finance, Term Loans, Capital Structure, Financial Institution, Management of working Capital, Costing, Break Even Analysis, Taxation - Income Tax, Excise Duty - Sales Tax.

UNIT V SUPPORT TO ENTREPRENEURS

Sickness in small Business - Concept, Magnitude, Causes and Consequences, Corrective Measures - Business Incubators - Government Policy for Small Scale Enterprises - Growth Strategies in small industry – Expansion, Diversification, Joint Venture, Merger and Sub Contracting. **TOTAL: 45 PERIODS**

OUTCOME:

 Upon completion of the course, students will be able to gain knowledge and skills needed to run a business successfully.

TEXT BOOKS :

- 1. Donald F Kuratko, "Entrepreneurship Theory, Process and Practice", 9th Edition, Cengage Learning, 2014.
- 2. Khanka. S.S., "Entrepreneurial Development" S.Chand & Co. Ltd., Ram Nagar, New Delhi, 2013.

REFERENCES:

- 1. EDII "Faulty and External Experts A Hand Book for New Entrepreneurs Publishers: Entrepreneurship Development", Institute of India, Ahmadabad, 1986.
- 2. Hisrich R D, Peters M P, "Entrepreneurship" 8th Edition, Tata McGraw-Hill, 2013.
- 3. Mathew J Manimala, "Enterprenuership theory at cross roads: paradigms and praxis" 2 Edition Dream tech, 2005.
- 4. Rajeev Roy, "Entrepreneurship" 2nd Edition, Oxford University Press, 2011.

9

9

9

С

3

Т

9

ME8094 COMPUTER INTEGRATED MANUFACTURING SYSTEMS L T P C

OBJECTIVE:

• To understand the application of computers in various aspects of Manufacturing viz., Design, Proper planning, Manufacturing cost, Layout & Material Handling system.

UNIT I INTRODUCTION

Brief introduction to CAD and CAM – Manufacturing Planning, Manufacturing control- Introduction to CAD/CAM – Concurrent Engineering-CIM concepts – Computerised elements of CIM system – Types of production - Manufacturing models and Metrics – Mathematical models of Production Performance – Simple problems – Manufacturing Control – Simple Problems – Basic Elements of an Automated system – Levels of Automation – Lean Production and Just-In-Time Production.

UNIT II PRODUCTION PLANNING AND CONTROL AND COMPUTERISED PROCESS PLANNING

Process planning – Computer Aided Process Planning (CAPP) – Logical steps in Computer Aided Process Planning – Aggregate Production Planning and the Master Production Schedule – Material Requirement planning – Capacity Planning- Control Systems-Shop Floor Control-Inventory Control – Brief on Manufacturing Resource Planning-II (MRP-II) & Enterprise Resource Planning (ERP) - Simple Problems.

UNIT III CELLULAR MANUFACTURING

Group Technology(GT), Part Families – Parts Classification and coding – Simple Problems in Opitz Part Coding system – Production flow Analysis – Cellular Manufacturing – Composite part concept – Machine cell design and layout – Quantitative analysis in Cellular Manufacturing – Rank Order Clustering Method - Arranging Machines in a GT cell – Hollier Method – Simple Problems.

UNIT IV FLEXIBLE MANUFACTURING SYSTEM (FMS) AND AUTOMATED GUIDED VEHICLE SYSTEM (AGVS)

Types of Flexibility - FMS – FMS Components – FMS Application & Benefits – FMS Planning and Control – Quantitative analysis in FMS – Simple Problems. Automated Guided Vehicle System (AGVS) – AGVS Application – Vehicle Guidance technology – Vehicle Management & Safety.

UNIT V INDUSTRIAL ROBOTICS

Robot Anatomy and Related Attributes – Classification of Robots- Robot Control systems – End Effectors – Sensors in Robotics – Robot Accuracy and Repeatability - Industrial Robot Applications – Robot Part Programming – Robot Accuracy and Repeatability – Simple Problems.

TOTAL: 45 PERIODS

OUTCOMES:

- CO1 Explain the basic concepts of CAD, CAM and computer integrated manufacturing systems
- CO2 Summarize the production planning and control and computerized process planning
- CO3 Differentiate the different coding systems used in group technology
- CO4 Explain the concepts of flexible manufacturing system (FMS) and automated guided vehicle (AGV) system
- CO5 Classification of robots used in industrial applications

9

9

9

9

3

3

0 0
- 1. Mikell.P.Groover "Automation, Production Systems and Computer Integrated Manufacturing", Prentice Hall of India, 2008.
- 2. Radhakrishnan P, Subramanyan S.and Raju V., "CAD/CAM/CIM", 2nd Edition, New Age International (P) Ltd, New Delhi, 2000.

REFERENCES:

- 1. Gideon Halevi and Roland Weill, "Principles of Process Planning A Logical Approach" Chapman & Hall, London, 1995.
- 2. Kant Vajpayee S, "Principles of Computer Integrated Manufacturing", Prentice Hall India.
- 3. Rao. P, N Tewari & T.K. Kundra, "Computer Aided Manufacturing", Tata McGraw Hill Publishing Company, 2000.

ME8074	VIBRATION AND NOISE CONTROL	LT	РС
		30	03

OBJECTIVE:

 The student will be able to understand the sources of vibration and noise in automobiles and make design modifications to reduce the vibration and noise and improve the life of the components

UNIT I **BASICS OF VIBRATION**

Introduction, classification of vibration: free and forced vibration, undamped and damped vibration, linear and non linear vibration, response of damped and undamped systems under harmonic force, analysis of single degree and two degree of freedom systems, torsional vibration, determination of natural frequencies.

BASICS OF NOISE UNIT II

Introduction, amplitude, frequency, wavelength and sound pressure level, addition, subtraction and averaging decibel levels, noise dose level, legislation, measurement and analysis of noise, measurement environment, equipment, frequency analysis, tracking analysis, sound quality analysis.

UNIT III **AUTOMOTIVE NOISE SOURCES**

Noise Characteristics of engines, engine overall noise levels, assessment of combustion noise, assessment of mechanical noise, engine radiated noise, intake and exhaust noise, engine necessary contributed noise, transmission noise, aerodynamic noise, tire noise, brake noise.

UNIT IV **CONTROL TECHNIQUES**

Vibration isolation, tuned absorbers, un-tuned viscous dampers, damping treatments, application dynamic forces generated by IC engines, engine isolation, crank shaft damping, modal analysis of the mass elastic model shock absorbers.

UNIT V SOURCE OF NOISE AND CONTROL

Methods for control of engine noise, combustion noise, mechanical noise, predictive analysis, palliative treatments and enclosures, automotive noise control principles, sound in enclosures, sound energy absorption, sound transmission through barriers

TOTAL: 45 PERIODS

9

9

9

9

OUTCOMES:

Upon the completion of this course the students will be able to

- CO1 Summarize the Basics of Vibration
- CO2 Summarize the Basics of Noise
- CO3 Explain the Sources of Automotive Noise
- CO4 Discuss the Control techniques for vibration
- CO5 Describe the sources and control of Noise

TEXT BOOK:

1. Singiresu S.Rao, "Mechanical Vibrations", 6th Edition, Pearson Education, 2016.

REFERENCES:

- 1. Balakumar Balachandran and Edward B. Magrab, "Fundamentals of Vibrations", 1st Editon, Cengage Learning, 2009
- Benson H. Tongue, "Principles of Vibrations", 2nd Edition, Oxford University, 2007
 Bernard Challen and Rodica Baranescu "Diesel Engine Reference Book", Second Edition, SAE International, 1999.
- 4. David Bies and Colin Hansen, "Engineering Noise Control Theory and Practice".4th Edition. E and FN Spon, Taylore & Francise e-Library, 2009
- 5. Grover. G.T., "Mechanical Vibrations", Nem Chand and Bros., 2009

EE8091

MICRO ELECTRO MECHANICAL SYSTEMS

С LTP 3 0 0 3

OBJECTIVES

- To provide knowledge of semiconductors and solid mechanics to fabricate MEMS devices.
- To educate on the rudiments of Micro fabrication techniques. •
- To introduce various sensors and actuators
- To introduce different materials used for MEMS
- To educate on the applications of MEMS to disciplines beyond Electrical and • Mechanical engineering.

UNIT I INTRODUCTION

Intrinsic Characteristics of MEMS – Energy Domains and Transducers- Sensors and Actuators – Introduction to Micro fabrication - Silicon based MEMS processes - New Materials - Review of Electrical and Mechanical concepts in MEMS – Semiconductor devices – Stress and strain analysis - Flexural beam bending- Torsional deflection.

UNIT II SENSORS AND ACTUATORS-I

Electrostatic sensors - Parallel plate capacitors - Applications - Interdigitated Finger capacitor - Comb drive devices - Micro Grippers - Micro Motors - Thermal Sensing and Actuation - Thermal expansion - Thermal couples - Thermal resistors - Thermal Bimorph - Applications -Magnetic Actuators - Micromagnetic components - Case studies of MEMS in magnetic actuators-Actuation using Shape Memory Alloys

UNIT III SENSORS AND ACTUATORS-II

Piezoresistive sensors – Piezoresistive sensor materials - Stress analysis of mechanical elements - Applications to Inertia, Pressure, Tactile and Flow sensors - Piezoelectric sensors and actuators - piezoelectric effects - piezoelectric materials - Applications to Inertia, Acoustic, Tactile and Flow sensors.

9

9

UNIT IV MICROMACHINING

Silicon Anisotropic Etching – Anisotrophic Wet Etching – Dry Etching of Silicon – Plasma Etching – Deep Reaction Ion Etching (DRIE) – Isotropic Wet Etching – Gas Phase Etchants – Case studies - Basic surface micro machining processes – Structural and Sacrificial Materials – Acceleration of sacrificial Etch – Striction and Antistriction methods – LIGA Process - Assembly of 3D MEMS – Foundry process.

UNIT V POLYMER AND OPTICAL MEMS

Polymers in MEMS– Polimide - SU-8 - Liquid Crystal Polymer (LCP) – PDMS – PMMA – Parylene – Fluorocarbon - Application to Acceleration, Pressure, Flow and Tactile sensors- Optical MEMS – Lenses and Mirrors – Actuators for Active Optical MEMS.

OUTCOMES

TOTAL: 45 PERIODS

- Ability to understand and apply basic science, circuit theory, Electro-magnetic field theory control theory and apply them to electrical engineering problems.
- Ability to understand and analyse, linear and digital electronic circuits.

TEXT BOOKS:

- 1. Chang Liu, "Foundations of MEMS", Pearson Education Inc., 2006.
- 2. Stephen D Senturia, "Microsystem Design", Springer Publication, 2000.
- 3. Tai Ran Hsu, "MEMS & Micro systems Design and Manufacture" Tata McGraw Hill, New Delhi, 2002.

REFERENCES:

- 1. James J.Allen, "Micro Electro Mechanical System Design", CRC Press Publisher, 2010
- 2. Julian w. Gardner, Vijay K. Varadan, Osama O. Awadelkarim, "Micro Sensors MEMS and Smart Devices", John Wiley & Son LTD,2002
- 3. Mohamed Gad-el-Hak, editor, "The MEMS Handbook", CRC press Baco Raton, 2000
- 4. Nadim Maluf," An Introduction to Micro Electro Mechanical System Design", Artech House, 2000.
- 5. Thomas M.Adams and Richard A.Layton, "Introduction MEMS, Fabrication and Application," Springer 2012.

GE8076

PROFESSIONAL ETHICS IN ENGINEERING

OBJECTIVE:

• To enable the students to create an awareness on Engineering Ethics and Human Values to instill Moral and Social Values and Loyalty and to appreciate the rights of others.

UNIT I HUMAN VALUES

Morals, values and Ethics – Integrity – Work ethic – Service learning – Civic virtue – Respect for others – Living peacefully – Caring – Sharing – Honesty – Courage – Valuing time – Cooperation – Commitment – Empathy – Self confidence – Character – Spirituality – Introduction to Yoga and meditation for professional excellence and stress management.

UNIT II ENGINEERING ETHICS

Senses of 'Engineering Ethics' – Variety of moral issues – Types of inquiry – Moral dilemmas – Moral Autonomy – Kohlberg's theory – Gilligan's theory – Consensus and Controversy – Models of professional roles - Theories about right action – Self-interest – Customs and Religion – Uses of Ethical Theories.

UNIT III ENGINEERING AS SOCIAL EXPERIMENTATION

Engineering as Experimentation – Engineers as responsible Experimenters – Codes of Ethics – A Balanced Outlook on Law.

UNIT IV SAFETY, RESPONSIBILITIES AND RIGHTS

Safety and Risk – Assessment of Safety and Risk – Risk Benefit Analysis and Reducing Risk - Respect for Authority – Collective Bargaining – Confidentiality – Conflicts of Interest – Occupational Crime – Professional Rights – Employee Rights – Intellectual Property Rights (IPR) – Discrimination.

UNIT V GLOBAL ISSUES

Multinational Corporations – Environmental Ethics – Computer Ethics – Weapons Development – Engineers as Managers – Consulting Engineers – Engineers as Expert Witnesses and Advisors – Moral Leadership –Code of Conduct – Corporate Social Responsibility. TOTAL: 45 PERIODS

OUTCOME:

• Upon completion of the course, the student should be able to apply ethics in society, discuss the ethical issues related to engineering and realize the responsibilities and rights in the society.

TEXT BOOKS:

- 1. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.
- 2. Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, New Delhi, 2003.

REFERENCES:

- 1. Charles B. Fleddermann, "Engineering Ethics", Pearson Prentice Hall, New Jersey, 2004.
- 2. Charles E. Harris, Michael S. Pritchard and Michael J. Rabins, "Engineering Ethics Concepts and Cases", Cengage Learning, 2009.
- 3. Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers", Oxford University Press, Oxford, 2001.
- 4. John R Boatright, "Ethics and the Conduct of Business", Pearson Education, New Delhi, 2003
- 5. Laura P. Hartman and Joe Desjardins, "Business Ethics: Decision Making for Personal Integrity and Social Responsibility" Mc Graw Hill education, India Pvt. Ltd., New Delhi, 2013.
- 6. World Community Service Centre, 'Value Education', Vethathiri publications, Erode, 2011.

L T P C 3 0 0 3

8

9

9

9

Web sources:

- 1. www.onlineethics.org
- www.nspe.org
 www.globalethics.org
 www.ethics.org

ANNA UNIVERSITY, CHENNAI AFFILIATED INSTITUTIONS B.E. MECHANICAL ENGINEERING REGULATIONS – 2017 CHOICE BASED CREDIT SYSTEM OPEN ELECTIVES (Offered by Other Branches)

V SEMESTER OPEN ELECTIVE - I

SL. NO.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Ρ	С
1.	OCE551	Air Pollution and Control Engineering	OE	3	3	0	0	3
2.	OAT551	Automotive Systems	OE	3	3	0	0	3
3.	OIC551	Biomedical Instrumentation	OE	3	3	0	0	3
4.	OIT552	Cloud Computing	OE	3	3	0	0	3
5.	OIT551	Database Management Systems	OE	3	3	0	0	3
6.	OAI551	Environment and Agriculture	OE	3	3	0	0	3
7.	OPT551	Fibre Reinforced Plastics	OE	3	3	0	0	3
8.	OCE552	Geographic Information System	OE	3	3	0	0	3
9.	OAT552	Internal Combustion Engines	OE	3	3	0	0	3
10.	OML551	Introduction To Nanotechnology	OE	3	3	0	0	3
11.	OIM552	Lean Manufacturing	OE	3	3	0	0	3
12.	OBM552	Medical Physics	OE	3	3	0	0	3
13.	OML552	Microscopy	OE	3	3	0	0	3
14.	OAI552	Participatory Water Resources Management	OE	3	3	0	0	3
15.	OCH552	Principles of Chemical Engineering	OE	3	3	0	0	3
16.	OBT554	Principles of Food Preservation	OE	3	3	0	0	3
17.	OMF551	Product Design and Development	OE	3	3	0	0	3
18.	OAI553	Production Technology of Agricultural machinery	OE	3	3	0	0	3
19.	ORO551	Renewable Energy Sources	OE	3	3	0	0	3
20.	OAN551	Sensors and Transducers	OE	3	3	0	0	3
21.	OIC552	State Variable Analysis and Design	OE	3	3	0	0	3
22.	OTL553	Telecommunication Network Management	OE	3	3	0	0	3
23.	OIM551	World Class Manufacturing	OE	3	3	0	0	3

VII SEMESTER OPEN ELECTIVE - II

SL. NO.	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Ρ	С
1.	OAI751	Agricultural Finance, Banking and Co-operation	OE	3	3	0	0	3
2.	OEE751	Basic Circuit Theory	OE	3	3	0	0	3
3.	OGI751	Climate Change and its Impact	OE	3	3	0	0	3
4.	OCS751	Data Structures and Algorithms	OE	3	3	0	0	3
5.	OML752	Electronic Materials	OE	3	3	0	0	3
6.	OCE751	Environmental and Social Impact Assessment	OE	3	3	0	0	3
7.	OAE751	Fundamentals of Combustion	OE	3	3	0	0	3
8.	OGI752	Fundamentals of Planetary Remote Sensing	OE	3	3	0	0	3
9.	OEN751	Green Building Design	OE	3	3	0	0	3
10.	OAI752	Integrated Water Resources Management	OE	3	3	0	0	3
11.	OEI 751	Introduction to Embedded Systems	OE	3	3	0	0	3
12.	OMF751	Lean Six Sigma	OE	3	3	0	0	3
13.	OAN751	Low Cost Automation	OE	3	3	0	0	3
14.	OMT751	MEMS and NEMS	OE	3	3	0	0	3
15.	OR0751	Nano Computing	OE	3	3	0	0	3
16.	OAE752	Principles of Flight Mechanics	OE	3	3	0	0	3
17.	OCH751	Process Modeling and Simulation	OE	3	3	0	0	3
18.	OAT751	Production of Automotive Components	OE	3	3	0	0	3
19.	OIE751	Robotics	OE	3	3	0	0	3
20.	OML753	Selection of Materials	OE	3	3	0	0	3
21.	OML751	Testing of Materials	OE	3	3	0	0	3
22.	OAT752	Vehicle Styling and Design	OE	3	3	0	0	3
23.	OTT751	Weaving Mechanisms	OE	3	3	0	0	3
24.	OMV751	Marine Vehicles	OE	3	3	0	0	3

OBJECTIVE:

• To impart knowledge on the principle and design of control of Indoor/ particulate/ gaseous air pollutant and its emerging trends.

UNIT I INTRODUCTION

Structure and composition of Atmosphere – Definition, Scope and Scales of Air Pollution – Sources and classification of air pollutants and their effect on human health, vegetation, animals, property, aesthetic value and visibility- Ambient Air Quality and Emission standards.

UNIT II METEOROLOGY

Effects of meteorology on Air Pollution - Fundamentals, Atmospheric stability, Inversion, Wind profiles and stack plume patterns- Atmospheric Diffusion Theories – Dispersion models, Plume rise.

UNIT III CONTROL OF PARTICULATE CONTAMINANTS

Factors affecting Selection of Control Equipment – Gas Particle Interaction – Working principle - Gravity Separators, Centrifugal separators Fabric filters, Particulate Scrubbers, Electrostatic Precipitators.

UNIT IV CONTROL OF GASEOUS CONTAMINANTS

Factors affecting Selection of Control Equipment – Working principle - absorption, Adsorption, condensation, Incineration, Bio filters – Process control and Monitoring.

UNIT V INDOOR AIR QUALITY MANAGEMENT

Sources, types and control of indoor air pollutants, sick building syndrome and Building related illness- Sources and Effects of Noise Pollution – Measurement – Standards –Control and Preventive measures.

OUTCOMES:

The students completing the course will have

- an understanding of the nature and characteristics of air pollutants, noise pollution and basic concepts of air quality management
- ability to identify, formulate and solve air and noise pollution problems
- ability to design stacks and particulate air pollution control devices to meet applicable standards.
- Ability to select control equipments.
- Ability to ensure quality, control and preventive measures.

TEXTBOOKS:

- 1. Lawrence K. Wang, Norman C. Pareira, Yung Tse Hung, "Air Pollution Control Engineering", Tokyo, springer science + science media LLC,2004.
- 2. Noel de Nevers, "Air Pollution Control Engineering", Waveland press, Inc 2017.
- 3. Anjaneyulu. Y, "Air Pollution and Control Technologies", Allied Publishers (P) Ltd., India 2002.

REFERENCES:

- 1. David H.F. Liu, Bela G. Liptak, "Air Pollution", Lweis Publishers, 2000.
- 2. Arthur C. Stern, "Air Pollution (Vol.I Vol.VIII)", Academic Press, 2006.
- 3. Wayne T.Davis, "Air Pollution Engineering Manual", John Wiley & Sons, Inc, 2000.
- 4. M.N Rao and HVN Rao, "Air Pollution", Tata Mcgraw Hill Publishing Company limited, 2007.
- 5. C.S.Rao, "Environmental Pollution Control Engineering", New Age International(P) Limited Publishers, 2006.

OCE551

10

11

LTPC

3003

7

6

11

TOTAL: 45 PERIODS

OAT551

AUTOMOTIVE SYSTEMS

OBJECTIVES:

- To understand the construction and working principle of various parts of an automobile.
- To have the practice for assembling and dismantling of engine parts and transmission system

AUTOMOTIVE ENGINE AUXILIARY SYSTEMS UNIT I

Automotive engines- External combustion engines --Internal combustion engines -classification of engines- SI Engines- CI Engines- two stroke engines -four stroke enginesconstruction and working principles - IC engine components- functions and materials -valve timing -port timing diagram- Injection system -Unit injector system- Rotary distributor type - Electronically controlled injection system for SI engines-CI engines-Ignition system - Electronic ignition system -Transistorized ignition system, capacitive discharge ignition system.

UNIT II VEHICLE FRAMES AND STEERING SYSTEM

Vehicle construction and different Chassis layouts -classifications of chassis- types of frames- frameless chassis construction -articulated vehicles- vehicle body - Vehicle aerodynamics-various resistances and its effects - steering system -conventional sophisticated vehicleand types of steering gear box-Power Steering- Steering geometry-condition for true rolling motion-Ackermann's- Devi's steering system - types of stub axle – Types of rear axles.

UNIT III **TRANSMISSION SYSTEMS**

Clutch-types and construction, gear boxes- manual and automatic, gear shift mechanisms, Over drive, transfer box, fluid flywheel, torque converter, propeller shaft, slip joints, universal joints -- Hotchkiss Drive and Torque Tube Drive- rear axle-Differential-wheels and tyres.

SUSPENSION AND BRAKES SYSTEMS UNIT IV

Suspension Systems- conventional Suspension Systems -independent Suspension Systems -leaf spring - coil spring -taper-lite - eligo, s spring Types of brakes -Pneumatic and Hydraulic Braking Systems, Antilock Braking System (ABS), electronic brake force distribution (EBD) and Traction Control. Derive the equation of Forces acting while applying a brakes on plain surface - inclined road-gradient.

ALTERNATIVE ENERGY SOURCES UNIT V

Use of Natural Gas, Liquefied Petroleum Gas, Bio-diesel, Bio-ethanol, Gasohol and Hydrogen in Automobiles- Engine modifications required –Performance, Combustion and Emission Characteristics of SI and CI engines with these alternate fuels - Electric and Hybrid Vehicles, Fuel Cell. Turbo chargers -Engine emission control by three way catalytic converter svstem.

Note: Practical Training in dismantling and assembling of Engine parts and Transmission Systems should be given to the students.

OUTCOMES:

- Upon completion of this course, the students will be able to identify the different components in automobile engineering.
- Have clear understanding on different auxiliary and transmission systems usual. •

TEXT BOOKS:

- 1. Ganesan V. "Internal Combustion Engines", Third Edition, Tata McGraw-Hill, 2007.
- 2. Jain K.K. and Asthana .R.B, "Automobile Engineering" Tata McGraw Hill Publishers, New Delhi, 2002.
- 3. Kirpal Singh, "Automobile Engineering", Vol 1 & 2, Seventh Edition, Standard Publishers, New Delhi, 1997.

9

g

q

TOTAL: 45 PERIODS

9

- 1. Heinz Heisler, "Advanced Engine Technology," SAE International Publications USA, 1998.
- 2. Joseph Heitner, "Automotive Mechanics," Second Edition, East-West Press, 1999.
- 3. Martin W, Stockel and Martin T Stockle, "Automotive Mechanics Fundamentals," The Good heart – Will Cox Company Inc, USA ,1978.
- 4. Newton , Steeds and Garet, "Motor Vehicles", Butterworth Publishers, 1989.

OIC551

BIOMEDICAL INSTRUMENTATION

OBJECTIVES:

- To Introduce Fundamentals of Biomedical Engineering •
- To study the communication mechanics in a biomedical system with few examples
- To study measurement of certain important electrical and non-electrical parameters
- To understand the basic principles in imaging techniques •
- To have a basic knowledge in life assisting and therapeutic devices •

UNIT I HUMAN BODY SUBSYSTEM AND TRANSDUCERS

Brief description of muscular, cardiovascular and respiratory systems; their electrical, mechanical and chemical activities. Principles and classification of transducers for Bio-medical applications. Electrode theory, different types of electrodes; Selection criteria for transducers and electrodes.

NON ELECTRICAL PARAMETERS MEASUREMENT UNIT II

Measurement of blood pressure - Cardiac output - Heart rate - Heart sound - Pulmonary function measurements - spirometer - Blood Gas analysers, pH of blood - Measurement of blood pCO2, pO2.

ELECTRICAL PARAMETERS MEASUREMENT AND ELECTRICAL SAFETY UNIT III 9

ECG – EEG – EMG – ERG – Lead systems and recording methods – Typical waveforms -Electrical safety in medical environment, shock hazards - leakage current - Instruments for checking safety parameters of biomedical equipments.

UNIT IV IMAGING MODALITIES AND BIO-TELEMETRY

Diagnostic X-rays - Computer tomography – MRI – Ultrasonography – Endoscopy Thermography – Different types of biotelemetry systems.

LIFE ASSISTING AND THERAPEUTIC DEVICES UNIT V

Pacemakers - Defibrillators - Ventilators - Nerve and muscle stimulators - Heart Lung machine -Dialysers - Diathermy – Lithotripsy.

OUTCOMES:

- Ability to understand communication mechanics in a biomedical system.
- Ability to understand and analyze measurement of certain electrical and non-electrical • parameters.
- Ability to understand basic principles of imaging techniques, life assisting and therapeutic devices.

TEXT BOOKS:

- 1. Leslie Cromwell, Biomedical Instrumentation and Measurement, Prentice hall of India, New Delhi, 2007.
- 2. Joseph J.carr and John M. Brown, Introduction to Biomedical Equipment Technology, John Wiley and sons, New York, 4th Edition, 2012.
- 3. Khandpur R.S. Handbook of Biomedical Instrumentation, , Tata McGraw-Hill, New Delhi, 2nd Edition, 2003.

q

LTPC 3003

9

9

9

TOTAL: 45 PERIODS

- 1. John G. Webster, Medical Instrumentation Application and Design, John Wiley and sons, New York, 1998.
- 2. Duane Knudson, Fundamentals of Biomechanics, Springer, 2nd Edition, 2007.
- 3. Suh, Sang, Gurupur, Varadraj P., Tanik, Murat M., Health Care Systems, Technology and Techniques, Springer, 1st Edition, 2011.
- 4. Ed. Joseph D. Bronzino, The Biomedical Engineering Hand Book, Third Edition, Boca Raton, CRC Press LLC, 2006.
- 5. M.Arumugam, 'Bio-Medical Instrumentation', Anuradha Agencies, 2003.

OIT552

CLOUD COMPUTING

L T P C 3 0 0 3

OBJECTIVES:

- To learn about the concept of cloud and utility computing.
- To have knowledge on the various issues in cloud computing.
- To be familiar with the lead players in cloud.
- To appreciate the emergence of cloud as the next generation computing paradigm.

UNIT I INTRODUCTION TO CLOUD COMPUTING

Introduction to Cloud Computing – Roots of Cloud Computing – Desired Features of Cloud Computing – Challenges and Risks – Benefits and Disadvantages of Cloud Computing.

UNIT II VIRTUALIZATION

Introduction to Virtualization Technology – Load Balancing and Virtualization – Understanding Hypervisor – Seven Layers of Virtualization – Types of Virtualization – Server, Desktop, Application Virtualization.

UNIT III CLOUD ARCHITECTURE, SERVICES AND STORAGE

NIST Cloud Computing Reference Architecture – Public, Private and Hybrid Clouds - laaS – PaaS – SaaS – Architectural Design Challenges – Cloud Storage.

UNIT IV RESOURCE MANAGEMENT AND SECURITY IN CLOUD

Inter Cloud Resource Management – Resource Provisioning Methods – Security Overview – Cloud Security Challenges – Data Security – Application Security – Virtual Machine Security.

UNIT V CASE STUDIES

Google App Engine(GAE) – GAE Architecture – Functional Modules of GAE – Amazon Web Services(AWS) – GAE Applications – Cloud Software Environments – Eucalyptus – Open Nebula – Open Stack.

TOTAL: 45 PERIODS

OUTCOMES:

On Completion of the course, the students should be able to:

- Articulate the main concepts, key technologies, strengths and limitations of cloud computing.
- Learn the key and enabling technologies that help in the development of cloud.
- Develop the ability to understand and use the architecture of compute and storage cloud, service and delivery models.
- Explain the core issues of cloud computing such as resource management and security.
- Be able to install and use current cloud technologies.
- Choose the appropriate technologies, algorithms and approaches for implementation and use of cloud.

9

9

9

9

- 1. Buyya R., Broberg J., Goscinski A., "Cloud Computing: Principles and Paradigm", First Edition, John Wiley & Sons, 2011.
- 2. Kai Hwang, Geoffrey C. Fox, Jack G. Dongarra, "Distributed and Cloud Computing, From Parallel Processing to the Internet of Things", Morgan Kaufmann Publishers, 2012.
- 3. Rittinghouse, John W., and James F. Ransome, "Cloud Computing: Implementation, Management, And Security", CRC Press, 2017.

OIT551

DATABASE MANAGEMENT SYSTEMS

OBJECTIVES

- To learn the fundamentals of data models
- To learn conceptual modeling using ER diagrams.
- To study SQL queries and database programming
- To learn proper designing of relational database.
- To understand database security concepts
- To understand Information retrieval techniques

UNIT I DBMS AND CONCEPTUAL DATA MODELING

Purpose of Database System – Data independence - Data Models – Database System Architecture – Conceptual Data modeling: ER models - Enhanced-ER Model. Introduction to relational databases – Relational Model – Keys – ER-to-Relational Mapping. Modeling of a library management system.

UNIT II DATABASE QUERYING

Relational Algebra – SQL: fundamentals – DDL – Specifying integrity constraints - DML – Basic retrieval queries in SQL - Complex SQL retrieval queries – nested queries – correlated queries – joins - aggregate functions. Creating a table, populating data, adding integrity constraints, querying tables with simple and complex queries.

UNIT III DATABASE PROGRAMMING

Database programming with function calls, stored procedures - views – triggers. Embedded SQL. ODBC connectivity with front end tools. Implementation using ODBC/JDBC and SQL/PSM, implementing functions, views, and triggers in MySQL / Oracle.

UNIT IV DATABASE DESIGN

Functional Dependencies – Design guidelines – Normal Forms: first, second, third – Boyce/Codd Normal Form – Normalization algorithms. Design of a banking database system / university database system.

UNIT V ADVANCED TOPICS

Database security issues – Discretionary access control – role based access – Encryption and public key infrastructures – challenges. Information Retrieval: IR Concepts, Retrieval Models, Queries in IR systems.

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course, the students will be able to:

- understand relational data model, evolve conceptual model of a given problem, its mapping to relational model and Normalization
- query the relational database and write programs with database connectivity
- understand the concepts of database security and information retrieval systems

7

11

9

9

9

L T PC 3 0 0 3

- 1. Ramez Elmasri, Shamkant B. Navathe, "Fundamentals of Database Systems", Sixth Edition, Pearson, 2011.
- 2. Abraham Silberschatz, Henry F. Korth, S. Sudharshan, "Database System Concepts", Sixth Edition, Tata McGraw Hill, 2011

REFERENCES:

- 1. C.J.Date, A.Kannan, S.Swamynathan, "An Introduction to Database Systems", Eighth Edition, Pearson Education, 2006.
- 2. Raghu Ramakrishnan, Database Management Systems, Fourth Edition, McGraw-Hill College Publications, 2015.

OBJECTIVE:

OAI551

To emphasize on the importance of environment and agriculture on changing global • scenario and the emerging issues connected to it.

ENVIRONMENT AND AGRICULTURE

UNIT I **ENVIRONMENTAL CONCERNS**

Environmental basis for agriculture and food - Land use and landscape changes - Water quality issues - Changing social structure and economic focus - Globalization and its impacts - Agro ecosystems.

UNIT II **ENVIRONMENTAL IMPACTS**

Irrigation development and watersheds – mechanized agriculture and soil cover impacts – Erosion and problems of deposition in irrigation systems - Agricultural drainage and downstream impacts -Agriculture versus urban impacts.

CLIMATE CHANGE UNIT III

Global warming and changing environment - Ecosystem changes - Changing blue-green-grey water cycles – Water scarcity and water shortages – Desertification.

UNIT IV ECOLOGICAL DIVERSITY AND AGRICULTURE

Ecological diversity, wild life and agriculture - GM crops and their impacts on the environment -Insets and agriculture – Pollination crisis – Ecological farming principles – Forest fragmentation and agriculture – Agricultural biotechnology concerns.

UNIT V **EMERGING ISSUES**

Global environmental governance – alternate culture systems – Mega farms and vertical farms – Virtual water trade and its impacts on local environment - Agricultural environment policies and its impacts - Sustainable agriculture.

OUTCOMES:

- Students will appreciate the role of environment in the current practice of agriculture and • concerns of sustainability, especially in the context of climate change and emerging global issues.
- Ecological context of agriculture and its concerns will be understood •

TEXTBOOKS:

- M.Lakshmi Narasaiah, Environment and Agriculture, Discovery Pub. House, 2006.
- 2. Arvind Kumar, Environment and Agriculture, ABH Publications, New Delhi, 2005.

8

9

LTPC 3003

10

10

TOTAL: 45 PERIODS

- 1. T.C. Byerly, Environment and Agriculture, United States. Dept. of Agriculture. Economic Research Service, 2006.
- 2. Robert D. Havener, Steven A. Breth, Environment and agriculture: rethinking development issues for the 21st century : proceedings of a symposium, Winrock International Institute for Agricultural Development, 1994
- 3. Environment and agriculture: environmental problems affecting agriculture in the Asia and Pacific region; World Food Day Symposium, Bangkok, Thailand. 1989

OBJECTIVES:

To enable the students

- To introduce the various materials for composite structure.
- To equip with the knowledge of sandwich structure technology.
- To provide knowledge in fracture mechanics of composites.
- To impart knowledge in fatigue and damping capacity of composite materials.
- To provide understanding of various manufacturing/fabricating techniques for composite structures

UNIT 1

Introduction: Definition, Reason for composites, Classifications of composites, Thermosets - Epoxy; Unsaturated polyester resin; vinyl ester, polyimides etc., - preparation, properties, and uses.

UNIT II

Reinforcements; Types, Properties, chemistry and applications of fillers such as silica, titanium oxide, talc, mica etc., Manufacturing process, Properties, structure and uses of Glass fiber. Carbon, Aramid, Boron, jute, sisal, cotton

UNIT III

Fabrications of Thermoset composites – Hand lay up method, compression and transfer moulding, pressure and vacuum bag process, filament winding, protrusion, reinforced RIM, RRIM, Injection moulding, of thermosets, SMC and DMC, Advantages and disadvantages of each method.

UNIT IV

Testing of composites- destructive and non-destructive tests; Destructive- tensile, compression, flexural, impact strength, Hardness – Fatigue- toughness HDT ,basic concepts of fracture mechanisms

UNIT V

Applications of composites – aerospace, land transport, marine, structural, chemical plants and corrosion resistant products, mechanical engineering and energy applications sports, electrical, electronic and communication applications, biomedical applications, repairs and maintenance etc.,

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of this course, , the students will be able to

- Select various materials for designing composite structures.
- Apply knowledge of fracture mechanics of composites during designing of composite structures.
- Analyze critically the damping capacity of composite materials.
- Correlate various manufacturing/fabricating techniques for composite structures based on design

9

LTPC

3 0 0 3

9

9

9

- 1. Hand book of composite by G. Lubin, Van Nostrand Co., New York 1969.
- 2. Polymers and Polymer Composites in Construction by L.C. Holleway, 1990
- 3. Engineering Plastics and Composites by John C. Bittence, 1990
- 4. Handbook of Plastics, Elastomers and Composites by Chrles A Harper, 1975
- 5. Designing with Reinforced composites- Technology-Performance, Economics-Rosato, 2st Ed. 1997.
- 6. Delwane Composite design Encyclopedia (Vol 3 Processing and Fabrication / Technology _ Ed. Leif Carlssen. And Joahn W. Hillispie, Technomic Publishing Ah. Lancaster U.S.A.
- 7. Fiber glass Reinforce Plastics Nicholas P. Cheremisinoff and Composites Paul N. Cheremmisinoff.,
- 8. Noyes Publications, N.J. U.S.A. 1995.
- 9. Composite applications the future is now, Thomas J. Drozdr, (Eds), Published by Society of Manufacturing Engineers, Michigan, 1989.
- 10. Polymer layered silicate and silica nano composites, Y.C. Ke, P. Stroeve and F.S. Wang, Elsevier, 2005

OCE552 GEOGRAPHIC INFORMATION SYSTEM

OBJECTIVES :

- To introduce the fundamentals and components of Geographic Information System
- To provide details of spatial data structures and input, management and output processes.

UNIT I FUNDAMENTALS OF GIS

Introduction to GIS - Basic spatial concepts - Coordinate Systems - GIS and Information Systems – Definitions – History of GIS - Components of a GIS – Hardware, Software, Data, People, Methods – Proprietary and open source Software - Types of data – Spatial, Attribute data- types of attributes – scales/ levels of measurements.

UNIT II SPATIAL DATA MODELS

Database Structures – Relational, Object Oriented – ER diagram - spatial data models – Raster Data Structures – Raster Data Compression - Vector Data Structures - Raster vs Vector Models-TIN and GRID data models - OGC standards - Data Quality.

UNIT III DATA INPUT AND TOPOLOGY

Scanner - Raster Data Input – Raster Data File Formats – Vector Data Input –Digitiser – Topology - Adjacency, connectivity and containment – Topological Consistency rules – Attribute Data linking – ODBC – GPS - Concept GPS based mapping.

UNIT IV DATA ANALYSIS

Vector Data Analysis tools - Data Analysis tools - Network Analysis - Digital Education models - 3D data collection and utilisation.

UNIT V APPLICATIONS

GIS Applicant - Natural Resource Management - Engineering - Navigation - Vehicle tracking and fleet management - Marketing and Business applications - Case studies.

OUTCOMES:

This course equips the student to

- Have basic idea about the fundamentals of GIS.
- Understand the types of data models.
- Get knowledge about data input and topology.
- Gain knowledge on data quality and standards.
- Understand data management functions and data output

TOTAL: 45 PERIODS

n

9

L T P C 3 0 0 3

9

9

9

- 1. Kang Tsung Chang, Introduction to Geographic Information Systems, McGraw Hill Publishing, 2nd Edition, 2011.
- 2. Ian Heywood, Sarah Cornelius, Steve Carver, Srinivasa Raju, "An Introduction Geographical Information Systems, Pearson Education, 2nd Edition, 2007.

REFERENCE:

1. Lo.C.P., Albert K.W. Yeung, Concepts and Techniques of Geographic Information Systems, Prentice-Hall India Publishers, 2006

OAT552 INTERNAL COMBUSTION ENGINES LTPC 3003

OBJECTIVE:

To impart the basic fundamental knowledge on IC engines and its working along with some • of the recent trends in IC engine

UNIT I INTRODUCTION IC ENGINE

Introduction, Types of IC engines, Constructional details IC engine, working, principles - 2 & 4 stroke engines, Cycles – Air standard cycles, Fuel air cycles and actual cycles, Actual Indicator diagram for four stroke and two stroke engines, General fuel properties, ignition properties octane and cetane rating, Materials for engine components

UNIT II PETROL ENGINES

Working and constructional details of petrol engines, Carburetor - constructional and working, types of carburetors, additional features in modern carburetor, A/F ratio calculation, Petrol Injection - introduction, Ignition – introduction and requirements, Battery and magneto coil ignition system, Electronic ignition system, Stages of combustion in petrol engines, Combustion chambers for petrol engine, formation of knock in petrol engine

UNIT III DIESEL ENGINES

Working and constructional details of diesel engines, fuel injection - requirements, types of injection systems - inline, distributor pumps, unit injector, Mechanical and pneumatic governors. Fuel injector, Types of injection nozzles, Spray characteristics. Injection timing, Split and multiple injection, Stages of combustion in Diesel engines, direct and indirect combustion chambers for diesel engine, knocking in diesel engine, Introduction on supercharging and turbocharging

COOLING AND LUBRICATION UNIT IV

Requirements, Types- Air cooling and liquid cooling systems, forced circulation cooling system, pressure and Evaporative cooling systems, properties of coolants for IC engine. Need of lubrication, Lubricants for IC engines - Properties of lubricants, Types of lubrication - Mist, Wet and dry sump lubrication systems.

UNIT V **MODERN TECHNOLOGIES IN IC ENGINES**

HCCI Engines - construction and working, CRDi injection system, GDI Technology, E -Turbocharger, Variable compression ratio engines, variable valve timing technology, Fuel cell, Hybrid Electric Technology

TEXT BOOKS:

1. Ganesan.V., Internal Combustion Engines, Tata McGraw Hill Publishing Co., New York, 1994.

2. Ramalingam. K. K., Internal Combustion Engines, Scitech publications, Chennai, 2003

9

9

9

9

9

TOTAL:45 PERIODS

- 1. Ellinger, H.E., Automotive Engines, Prentice Hall Publishers, 1992.
- 2. Heldt.P.M. High Speed Combustion Engines, Oxford IBH Publishing Co., Calcutta, 1975.
- 3. Obert E.F., Internal Combustion Engines Analysis and Practice, International Text Books:Co., Scranton, Pennsvlvania, 1988.
- 4. William. H. Crouse, Automotive Engines, McGraw Hill Publishers, 1985.

OML551 INTRODUCTION TO NANOTECHNOLOGY LTPC

OBJECTIVE:

Make the students to understand about the nanomaterials, synthesis and its characterization.

BASICS AND SCALE OF NANOTECHNOLOGY UNIT I

Introduction -Scientific revolutions -Time and length scale in structures -Definition of a nanosystem - Dimensionality and size dependent phenomena - Surface to volume ratio - Fraction of surface atoms -Surface energy and surface stress- surface defects-Properties at nanoscale (optical, mechanical, electronic and magnetic).

UNIT II DIFFERENT CLASSES OF NANOMATERIALS

Classification based on dimensionality-Quantum Dots, Wells and Wires- Carbon- based nano materials (buckyballs, nanotubes, graphene)-Metalbased nano materials (nanogold, nanosilver and metal oxides) -Nanocomposites- Nanopolymers -Nanoglasses -Nano ceramics -Biological nanomaterials.

UNIT III SYNTHESIS OF NANOMATERIALS

Classification of synthesis: Top down and bottom up nanofabrication. Chemical Methods: Metal Nanocrystals by Reduction - Solvothermal Synthesis- Photochemical Synthesis - Sonochemical Routes- Chemical Vapor Deposition (CVD) -Metal Oxide - Chemical Vapor Deposition (MOCVD).Physical Methods:Ball Milling -Electrodeposition - Spray Pyrolysis - Flame Pyrolysis -DC/RF Magnetron Sputtering - Molecular Beam Epitaxy (MBE)

UNIT IV FABRICATION AND CHARACTERIZATION OF NANOSTRUCTURES

Nanofabrication: Photolithography and its limitation-Electron-beam lithography (EBL)- Nanoimprint -Softlithography patterning. Characterization: Field Emission Scanning Electron Microscopy (FESEM) – Environmental Scanning Electron Microscopy (ESEM) High Resolution Transmission Electron Microscope (HRTEM) – Scanning Tunneling Microscope (STM)-Surface enhanced Raman spectroscopy (SERS)- X-ray Photoelectron Spectroscopy (XPS) - Auger electron spectroscopy (AES) -Rutherford backscattering spectroscopy (RBS). 9

UNIT V **APPLICATIONS**

Solar energy conversion and catalysis - Molecular electronics and printed electronics -Nanoelectronics -Polymers with aspecial architecture - Liquid crystalline systems - Linear and nonlinear optical and electro-optical properties, Applicationsin displays and other devices -Nanomaterials for data storage - Photonics, Plasmonics- Chemical and biosensors -Nanomedicine and Nanobiotechnology -Nanotoxicology challenges.

TEXT BOOKS

- 1. Bhusan, Bharat (Ed), "Springer Handbook of Nanotechnology", 2nd Edition, 2007.
- 2. Hari Singh Nalwa, "Nanostructured Materials and Nanotechnology", Academic Press, 2002.
- 3. Pradeep T., "A Textbook of Nanoscience and Nanotechnology", Tata McGraw Hill Education Pvt. Ltd., 2012.

TOTAL: 45 PERIODS

9

9

9

9

3 0 0 3

- 1. Charles P. Poole Jr., Frank J. Ownes, 'Introduction to Nanotechnology", Wiley Interscience, 2003.
- 2. Dupas C., Houdy P., Lahmani M., "Nanoscience: Nanotechnologies and Nanophysics", Springer-Verlag Berlin Heidelberg, 2007.
- 3. Mark Ratner and Daniel Ratner, "Nano Technology", Pearson Education, New Delhi, 2003.
- 4. Nabok A., "Organic and Inorganic Nanostructures", Artech House, 2005.

OIM552

LEAN MANUFACTURING

OBJECTIVES:

- To study the various tools for lean manufacturing (LM).
- To apply the above tools to implement LM system in an organization.

UNIT I INTRODUCTION TO LEAN MANUFACTURING

Conventional Manufacturing versus Lean Manufacturing – Principles of Lean Manufacturing – Basic elements of lean manufacturing – Introduction to LM Tools.

UNIT II CELLULAR MANUFACTURING, JIT, TPM

Cellular Manufacturing – Types of Layout, Principles of Cell layout, Implementation. JIT – Principles of JIT and Implementation of Kanban. TPM – Pillars of TPM, Principles and implementation of TPM.

UNIT III SET UP TIME REDUCTION, TQM, 5S, VSM

Set up time reduction – Definition, philosophies and reduction approaches. TQM – Principles and implementation. 5S Principles and implementation - Value stream mapping - Procedure and principles.

UNIT IV SIX SIGMA

Six Sigma – Definition, statistical considerations, variability reduction, design of experiments – Six Sigma implementation

UNIT V CASE STUDIES

Various case studies of implementation of lean manufacturing at industries.

TOTAL: 45 PERIODS

OUTCOMES:

• The students will be able to identify waste in any process, reduce the waste using proper kaizens and other methods thereby improving the productivity of the organisation using LM tools.

REFERENCES:

- 1. Design and Analysis of Lean Production Systems, Ronald G. Askin & Jeffrey B. Goldberg, John Wiley & Sons, 2003
- 2. Mikell P. Groover (2002) Automation, Production Systems and CIM.
- 3. Rother M. and Shook J, 1999 Learning to See: Value Stream Mapping to Add Value and Eliminate Muda', Lean Enterprise Institute, Brookline, MA.

9

9

9

L T P C 3 0 0 3

9

Q

OBM552

MEDICAL PHYSICS

LTPC 3 0 0 3

OBJECTIVES:

- To study the complete non-ionizing radiations including light and its effect in human body.
- To understand the principles of ultrasound radiation and its applications in medicine. •
- To learn about radioactive nuclides and also the interactions of radiation with matters and • how isotopes are produced.
- To study the harmful effects of radiation and radiation protection regulations. •

UNIT I NON-IONIZING RADIATION AND ITS MEDICAL APPLICATIONS

Introduction to EM waves - Tissue as a leaky dielectric - Relaxation processes: Debye model, Cole-Cole model- Overview of non-ionizing radiation effects-Low Frequency Effects- Higher frequency effects. Physics of light-Measurement of light and its unit- limits of vision and color vision an overview - Applications of ultraviolet in medicine, Thermography.

UNIT II **ULTRASOUND IN MEDICINE**

Ultrasound fundamentals - Generation of ultrasound (Ultrasound Transducer) - Interaction of Ultrasound with matter: Cavitation, Reflection, Transmission- Scanning systems - Artefacts-Ultrasound- Doppler-Double Doppler shift-Clinical Applications- Ultrasonography.

PRINCIPLES OF RADIOACTIVE NUCLIDES AND DECAY UNIT III

Introduction to Radioisotopes - Radioactive decay : Spontaneous Fission, Isomeric Transition, Alpha Decay, Beta Decay, Positron Decay, Electron Capture- Radioactive decay equations - Half life- Mean Life- Effective half-life - Natural and Artificial radioactivity, - Production of radionuclide -Cyclotron produced Radionuclide - Reactor produced Radionuclide: fission and electron Capture reaction, Target and Its Processing Equation for Production of Radionuclide - Radionuclide Generator-Technetium generator.

UNIT IV INTERACTION OF RADIATION WITH MATTER

Interaction of charged particles with matter -Specific ionization, Linear energy transfer, range, Bremsstrahlung, Annihilation - Interaction of X and Gamma radiation with matter: Photoelectric effect, Compton Scattering, Pair production- Attenuation of Gamma Radiation - Interaction of neutron with matter and their clinical significance- Radionuclide used in Medicine and Technology.

RADIATION EFFECTS AND REGULATIONS UNIT V

Classification of Radiation Damage, Stochastic and Deterministic Effects, Acute Effects of Total Body Irradiation, Long-Term Effects of Radiation, Risk Versus Benefit in Diagnostic Radiology and Nuclear Medicine, Risk of Pregnant Women, Nuclear Regulatory Commission, ALARA Program, Medical Uses of Radioactive Materials, Survey for Contamination and Exposure Rate, Dose Calibrators and Survey Meters, Bioassay, Radioactive Waste Disposal.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, the student should be able to:

- Analyze the low frequency and high frequency effects of non-ionizing radiation and physics of light.
- Define various clinical applications based on ultrasound wave.
- Explain the process of radioactive nuclide production using different techniques •
- Analyze radiation mechanics involved with various physiological systems •
- Outline the detrimental effects of radiation and regulations for radiation safety.

TEXT BOOKS:

- 1. B H Brown, R H Smallwood, D C Barber, P V Lawford and D R Hose, Medical Physics and Biomedical Engineering, 2nd Edition, IOP Publishers.2001. (Unit I & II)
- 2. Gopal B. Saha, Physics and Radiobiology of Nuclear Medicine, 4th Edition, Springer, 2013. (Unit III & IV)
- 3. R.Hendee and Russell Ritenour "Medical Imaging Physics", Fourth Edition William, Wiley-Liss, 2002. (Unit V)

Q

9

9

9

- 1. S.Webb "The Physics of Medical Imaging", Taylor and Francis, 1988
- 2. HyltonB.Meire and Pat Farrant "Basic Ultrasound" John Wiley & Sons, 1995
- 3. John R Cameran, James G Skofronick "Medical Physics" John-Wiley & Sons. 1978
- 4. W.J.Meredith and J.B. Massey "Fundamental Physics of Radiology" Third edition, Varghese Publishing house. 1992

OML552

MICROSCOPY

LTPC 3 0 0 3

OBJECTIVE:

This course will cover the basic principles and techniques of optical and electron microscopy. This course also deals with the sample preparation techniques for the microstructural analysis.

UNIT I INTRODUCTION

History of Microscopy, Overview of current microscopy techniques. Light as particles and waves, Fundamental of optics: Diffraction and interference in image formation, real and virtual images, Resolution, Depth of field and focus, Magnification, Numerical aperture, Aberration of lenses. Components of Light Microscopy, Compound light microscopy and its variations.

UNIT II MICROSCOPY

Phase contrast microscopy: optical design, theory, image interpretation, Dark-field microscopy: optical design, theory, image interpretation, Polarization Microscopy: Polarized light, optical design, theory, image interpretation, Differential Interference Contrast (DIC): equipment and optics, image interpretation, Modulation contrast microscopy: contrast methods using oblique illumination.

UNIT III ELECTRON MICROSCOPY

Interaction of electrons with matter, elastic and inelastic scattering, secondary effects, Components of electron microscopy: Electron sources, pumps and holders, lenses, apertures, and resolution. Scanning Electron and Transmission Electron Microscopy: Principle, construction, applications and limitations.

SAMPLE PREPARATION FOR MICROSTRUCTURAL ANALYSIS UNIT IV

Optical Microscopy sample preparation: Grinding, polishing and etching, SEM sample preparation: size constrains, TEM sample preparation: Disk preparation, electro polishing, ion milling, lithography, storing specimens.

UNIT V CHEMICAL ANALYSIS

Surface chemical composition (Principle and applications) - Mass spectroscopy and X-ray emission spectroscopy - Energy Dispersive Spectroscopy- Wave Dispersive Spectroscopy. Electron spectroscopy for chemical analysis (ESCA), Ultraviolet Photo Electron Spectroscopy (UPS), X ray Photoelectron Spectroscopy (XPS), Auger Electron Spectroscopy (AES)-Applications.

TOTAL: 45 PERIODS

OUTCOMES:

- Able to understand the physics behind the microscopy.
- Ability to describe the principle, construction and working of light microscopy. •
- Ability to appreciate about electron microscopy. •
- Ability to understand about the important of sample preparation technique.
- Ability to identify the appropriate spectroscopy technique for chemical analysis.

9

9

9

9

- 1. Douglas B. Murphy, Fundamentals of light microscopy and electronic imaging, 2001, Wiley-Liss, Inc. USA
- 2. David B. Williams and C. Barry Carter, Transmission Electron Microscopy-A Textbook for Materials Science, Springer US, 2nd edition, 2009.

REFERENCES:

- 1. Brandon D. G, "Modern Techniques in Metallography", Von Nostrand Inc. NJ, USA, 1986.
- 2. Whan R E (Ed), ASM Handbook, Volume 10, Materials Characterisation", Nineth Edition, ASM international, USA, 1986.
- 3. Thomas G., "Transmission electron microscopy of metals", John Wiley, 1996.

OAI552 PARTICIPATORY WATER RESOURCES MANAGEMENT L T P C 3 0 0 3

OBJECTIVE:

• To gain an insight on local and global perceptions and approaches on participatory water resource management

UNIT I FUNDAMENTALS: SOCIOLOGY AND PARTICIPATORY APPROACH 6

Sociology – Basic concepts – Perspectives- Social Stratification – Irrigation as a Socio technical Process - Participatory concepts– Objectives of participatory approach

UNIT II UNDERSTANDING FARMERS PARTICIPATION

Farmers participation –need and benefits – Comparison of cost and benefit -Sustained system performance - Kinds of participation – Context of participation, factors in the environment – WUA - Constraints in organizing FA – Role of Community Organiser – Case Studies.

UNIT III ISSUES IN WATER MANAGEMENT

Multiple use of water – Issues in Intersectoral Water Allocation - domestic, irrigation, industrial sectors - modernization techniques – Rehabilitation – Command Area Development - Water delivery systems

UNIT IV PARTICIPATORY WATER CONSERVATION

Global Challenges -Social – Economic – Environmental - Solutions –Political - Water Marketing – Water Rights -Consumer education – Success Stories Case Studies

UNIT V PARTICIPATORY WATERSHED DEVELOPMENT

Concept and significance of watershed - Basic factors influencing watershed development ---Principles of watershed management - Definition of watershed management - Identification of problems - Watershed approach in Government programmes --- People's participation - Entry point activities - Evaluation of watershed management measures.

TOTAL: 45 PERIODS

OUTCOMES:

The students will be able to

• Gain knowledge on various processes involved in participatory water resource management.

- Understand famers participation in water resources management.
- Aware of the issues related to water conservation and watershed development
- Get knowledge in participatory water conservation
- Understand concept, principle, approach of watershed management.

10

10

9 rial

- 1. Sivasubramaniyan, K. Water Management, SIMRES Publication, Chennai, 2011
- 2. Uphoff.N., Improving International Irrigation management with Farmer Participation -Getting the process Right – Studies in water Policy and management, No.11, Westview press, Boulder, CO, 1986.
- 3. Tideman, E.M., "Watershed Management", Omega Scientific Publishers, New Delhi, 1996.

REFERENCE:

1. Chambers Robert, Managing canal irrigation, Cambridge University Press, 1989

OCH552 PRINCIPLES OF CHEMICAL ENGINEERING LTPC

OBJECTIVES:

• To understand the overall view of the chemical engineering subjects

UNIT I

Chemistry, Chemical Engineering and Chemical Technology; Chemical process industries: History and their role in Society; Role of Chemical Engineer; History and Personalities of Chemical Engineering; Greatest achievements of Chemical Engineering.

UNIT II

Components of Chemical Engineering: Role of Mathematics, Physics, Chemistry and Biology; Thermodynamics, Transport Phenomena, Chemical Kinetics and Process dynamics, design and control.

UNIT III

Concept of Unit Processes and Unit Operations; Description of different Unit Processes and Unit Operations; Designing of equipments; Flowsheet representation of process plants, Evolution of an Industry - Sulphuric acid and Soda ash manufacture. Demonstration of simple chemical engineering experiments; Plant visit to a chemical industry

UNIT IV

Role of Computer in Chemical Engineering; Chemical Engineering Software; Visit to Process Simulation Lab; Relation between Chemical Engineering and other engineering disciplines; Traditional vs. modern Chemical Engineering; Versatility of Chemical Engineering: Role of Chemical Engineers in the area of Food, Medical, Energy, Environmental, Biochemical, Electronics etc. Plant visit to an allied industry.

UNIT V

Paradigm shifts in Chemical Engineering; Range of scales in Chemical Engineering; Opportunities for Chemical Engineers; Future of Chemical Engineering. **TOTAL: 45 PERIODS**

OUTCOMES

- On completion of the course, students will attain knowledge in fluid behavior and solid properties.
- Understand the concept of chemical engineering principles

TEXT BOOKS:

- 1. Badger W.L. and Banchero J.T., "Introduction to Chemical Engineering", 6th Edition, Tata McGraw Hill, 1997.
- 2. Dryden, C.E., "Outlines of Chemicals Technology", Edited and Revised by Gopala Rao, M. and M.Sittig, 2nd Edition, Affiliated East-West press, 1993.
- 3. Randolph Norris Shreve, George T. Austin, "Shreve'e Chemical Process Industries", 5th edition, McGraw Hill, 1984

4

12

12

5

3 0 0 3

- 1. McCabe, W.L., Smith, J. C. and Harriot, P. "Unit operations in Chemical Engineering", McGraw Hill, 7th Edition, 2001
- 2. Finlayson, B. A., Introduction to Chemical Engineering Computing, John Wiley & Sons, New Jersey, 2006.

OBT554 PRINCIPLES OF FOOD PRESERVATION LTPC 3 0 0 3

OBJECTIVE:

The course aims to introduce the students to the area of Food Preservation. This is • necessary for effective understanding of a detailed study of food processing and technology subjects.

UNIT I FOOD PRESERVATION AND ITS IMPORTANCE

Introduction to food preservation. Wastage of processed foods; Shelf life of food products; Types of food based on its perishability. Traditional methods of preservation

METHODS OF FOOD HANDLING AND STORAGE UNIT II

Nature of harvested crop, plant and animal; storage of raw materials and products using low temperature, refrigerated gas storage of foods, gas packed refrigerated foods, sub atmospheric storage, Gas atmospheric storage of meat, grains, seeds and flour, roots and tubers; freezing of raw and processed foods.retort pouch packing. Aseptic packaging.

UNIT III **THERMAL METHODS**

Newer methods of thermal processing; batch and continuous; In container sterilization- canning; application of infra-red microwaves; ohmic heating; control of water activity; preservation by concentration and dehydration; osmotic methods

DRYING PROCESS FOR TYPICAL FOODS UNIT IV

Rate of drying for food products; design parameters of different type of dryers; properties of airwater mixtures. Psychrometric chart, freezing and cold storage.freeze concentration, dehydrofreezing, freeze drying, IQF; calculation of refrigeration load, design of freezers and cold storages.

UNIT V NON-THERMAL METHODS

Super Critical Technology for Preservation - Chemical preservatives, preservation by ionizing radiations, ultrasonics, high pressure, fermentation, curing, pickling, smoking, membrane technology. Hurdle technology,

OUTCOMES:

On completion of the course the students are expected to

Be aware of the different methods applied to preserving foods.

TEXT BOOKS:

- 1. Karnal, Marcus and D.B. Lund "Physical Principles of Food Preservation". Rutledge, 2003.
- 2. VanGarde, S.J. and Woodburn. M "Food Preservation and Safety Principles and Practice".Surbhi Publications, 2001.
- 3. Sivasankar, B. "Food Processing & Preservation", Prentice Hall of India, 2002.
- 4. Khetarpaul, Neelam, "Food Processing and Preservation", Daya Publications, 2005.

REFERENCES:

1. Rahman, M. Shafiur. "Handbook of Food Preservation". Marcel & Dekker, 2006.

9

9

9

TOTAL: 45 PERIODS

9

- 2. Zeuthen, Peter and Bogh-Sarensen, Leif. "Food Preservation Techniques". CRC / Wood Head Publishing, 2003.
- 3. Ranganna, S. "Handbook of Canning and Aseptic Packaging". Tata McGraw-Hill, 2000.
- 4. Ranganna, S. "Handbook of Canning and Aseptic Packaging". Tata McGraw-Hill, 2000.

OMF551 PRODUCT DESIGN AND DEVELOPMENT L T P C

OBJECTIVE:

The course aims at providing the basic concepts of product design, product features and its architecture so that student can have a basic knowledge in the common features a product has and how to incorporate them suitably in product.

UNIT I INTRODUCTION

Need for IPPD – Strategic importance of Product development – integration of customer, designer, material supplier and process planner, Competitor and customer – Behaviour analysis. Understanding customer – prompting customer understanding – involve customer in development and managing requirements – Organization – process management and improvement – Plan and establish product specifications.

UNIT II CONCEPT GENERATION AND SELECTION

Task – Structured approaches – clarification – search – externally and internally – explore systematically – reflect on the solutions and processes – concept selection – methodology – benefits.

UNIT III PRODUCT ARCHITECTURE

Implications – Product change – variety – component standardization – product performance – manufacturability – product development management – establishing the architecture – creation – clustering – geometric layout development – fundamental and incidental interactions – related system level design issues – secondary systems – architecture of the chunks – creating detailed interface specifications.

UNIT IV INDUSTRIAL DESIGN

Integrate process design – Managing costs – Robust design – Integrating CAE, CAD, CAM tools – Simulating product performance and manufacturing processes electronically – Need for industrial design – impact – design process – investigation of for industrial design – impact – design process – investigation – refinement – management of the industrial design process – technology driven products – user – driven products – assessing the quality of industrial design.

UNIT V DESIGN FOR MANUFACTURING AND PRODUCT DEVELOPMENT

Definition – Estimation of Manufacturing cost – reducing the component costs and assembly costs – Minimize system complexity – Prototype basics – principles of prototyping – planning for prototypes – Economic Analysis – Understanding and representing tasks – baseline project planning – accelerating the project – project execution.

TOTAL: 45 PERIODS

OUTCOME:

• The student will be able to design some products for the given set of applications; also the knowledge gained through prototyping technology will help the student to make a prototype of a problem and hence product design and development can be achieved.

TEXT BOOK:

1. Kari T.Ulrich and Steven D.Eppinger, "Product Design and Development", McGraw-Hill International Edns. 1999.

9

9

9

9

and ite

9

3 0 0 3

- 1. Kemnneth Crow, "Concurrent Engg./Integrated Product Development", DRM Associates, 26/3, Via Olivera, Palos Verdes, CA 90274(310) 377-569, Workshop Book.
- 2. Stephen Rosenthal, "Effective Product Design and Development", Business One Orwin, Homewood, 1992, ISBN 1-55623-603-4.
- 3. Staurt Pugh, "Tool Design –Integrated Methods for Successful Product Engineering", Addison Wesley Publishing, New york, NY.

PRODUCTION TECHNOLOGY OF AGRICULTURAL MACHINERY OAI553 LT PC 3003

OBJECTIVES:

- To understand the concept and basic mechanics of metal cutting, working of standard machine tools, such as lathe, shaping and allied machines, milling, drilling and allied machines, grinding and allied machines and broaching.
- To understand the basic concepts of Computer Numerical Control (CNC) machine tool and • CNC programming.

UNIT I **ENGINEERING MATERIALS**

Engineering materials - their classification - Mechanical properties of materials, strength, elasticity, plasticity. stiffness. malleability, ductility, brittleness, toughness, hardness, resilience. machinability, formability, weldability. Steels and cast irons: Carbon steels, their classification based on percentage of carbon as low, mild, medium & high carbon steel, their properties & applications. Wrought iron, cast iron. Alloy steels: Stainless steel, tool steel.

UNIT II MACHINING

Basic principles of lathe - machine and operations performed on it. Basic description of machines and operations of Shaper-Planner, Drilling, Milling & Grinding.

UNIT III WELDING

Introduction, classification of welding processes. Gas welding, types of flames and their applications. Electric Arc welding. Resistance welding, Soldering & Brazing processes and their uses.

UNIT IV ADVANCED MANUFACTURING PROCESS

Abrasive flow machining - abrasive jet machining - water jet machining - Electro Discharge Machining (EDM) - Wire cut EDM - Electro Chemical Machining (ECM) - Ultrasonic Machining / Drilling (USM / USD) - Electron Beam Machining (EBM) - Laser Beam Machining (LBM).

UNIT V **CNC MACHINE**

Numerical control (NC) machine tools - CNC: types, constitutional details, special features - design considerations of CNC machines for improving machining accuracy - structural members - slide ways - linear bearings - ball screws - spindle drives and feed drives. Part programming fundamentals - manual programming.

TOTAL: 45 PERIODS

OUTCOME:

Upon completion of this course, the students can able to apply the different manufacturing • process and use this in industry for component production.

TEXTBOOKS:

- 1. "Manufacturing Engineering and Technology", Kalpakjian and Schmid, Pearson, 2010.
- 2. Hajra Choudry, "Elements of workshop technology Vol II", Media promoters, 2002.

9

9

9

9

q

- 1. Gupta. K.N., and Kaushik, J.P., 1998, Workshop Technology Vol I and II, New Heights, Daryaganj, New Delhi.
- 2. Arthur. D., et. al. 1998, General Engineering Workshop Practice, Asia Publishing House, Bombay.
- 3. Chapman W.A.J., Workshop Technology, 1992, Part I, II, III, E.L.B.S. and Edward Amold Publishers Ltd, London.

RENEWABLE ENERGY SOURCES

OBJECTIVES:

ORO551

- To get exposure on solar radiation and its environmental impact to power.
- To know about the various collectors used for storing solar energy.
- To know about the various applications in solar energy.
- To learn about the wind energy and biomass and its economic aspects.
- To know about geothermal energy with other energy sources. •

UNIT I PRINCIPLES OF SOLAR RADIATION

Role and potential of new and renewable source, the solar energy option, Environmental impact of solar power, physics of the sun, the solar constant, extraterrestrial and terrestrial solar radiation, solar radiation on titled surface, instruments for measuring solar radiation and sun shine, solar radiation data.

UNIT II SOLAR ENERGY COLLECTION

Flat plate and concentrating collectors, classification of concentrating collectors, orientation and thermal analysis, advanced collectors.

UNIT III SOLAR ENERGY STORAGE AND APPLICATIONS

Different methods, Sensible, latent heat and stratified storage, solar ponds. Solar Applicationssolar heating/cooling technique, solar distillation and drying, photovoltaic energy conversion.

UNIT IV WIND ENERGY

Sources and potentials, horizontal and vertical axis windmills, performance characteristics, Betz criteria BIO-MASS: Principles of Bio-Conversion, Anaerobic/aerobic digestion, types of Bio-gas digesters, gas yield, combustion characteristics of bio-gas, utilization for cooking, I.C.Engine operation and economic aspects.

UNIT V **GEOTHERMAL ENERGY**.

Resources, types of wells, methods of harnessing the energy, potential in India. OCEAN ENERGY: OTEC, Principles utilization, setting of OTEC plants, thermodynamic cycles. Tidal and wave energy: Potential and conversion techniques, mini-hydel power plants, and their economics. DIRECT ENERGY CONVERSION: Need for DEC, Carnot cycle, limitations, principles of DEC.

OUTCOMES:

- Understanding the physics of solar radiation. •
- Ability to classify the solar energy collectors and methodologies of storing solar energy.
- Knowledge in applying solar energy in a useful way.
- Knowledge in wind energy and biomass with its economic aspects. •
- Knowledge in capturing and applying other forms of energy sources like wind, biogas and geothermal energies.

TOTAL: 45 PERIODS

8

10

10

9

7

LTPC 3 0 0 3

- 1. Rai G.D., "Non-Conventional Energy Sources", Khanna Publishers, 2011
- 2. Twidell & Wier, "Renewable Energy Resources", CRC Press (Taylor & Francis), 2011

REFERENCES:

- 1. Tiwari and Ghosal, "Renewable energy resources", Narosa Publishing House, 2007
- 2. Ramesh R & Kumar K.U, "Renewable Energy Technologies", Narosa Publishing House, 2004
- 3. Mittal K M, "Non-Conventional Energy Systems", Wheeler Publishing Co. Ltd, New Delhi, 2003
- 4. Kothari D.P, Singhal ., K.C., "Renewable energy sources and emerging technologies", P.H.I, New Delhi, 2010

OAN551

SENSORS AND TRANSDUCERS

LTPC 3 0 0 3

9

9

9

9

OBJECTIVES:

- To understand the concepts of measurement technology.
- To learn the various sensors used to measure various physical parameters.
- To learn the fundamentals of signal conditioning, data acquisition and communication systems used in mechatronics system development.

UNIT I INTRODUCTION

Basics of Measurement - Classification of errors - Error analysis - Static and dynamic characteristics of transducers - Performance measures of sensors - Classification of sensors -Sensor calibration techniques – Sensor Output Signal Types.

UNIT II MOTION. PROXIMITY AND RANGING SENSORS

Motion Sensors - Potentiometers, Resolver, Encoders - Optical, Magnetic, Inductive, Capacitive, LVDT - RVDT - Synchro - Microsyn, Accelerometer., GPS, Bluetooth, Range Sensors - RF beacons, Ultrasonic Ranging, Reflective beacons, Laser Range Sensor (LIDAR).

UNIT III FORCE, MAGNETIC AND HEADING SENSORS

Strain Gage, Load Cell, Magnetic Sensors -types, principle, requirement and advantages: Magneto resistive - Hall Effect - Current sensor Heading Sensors - Compass, Gyroscope, Inclinometers.

UNIT IV **OPTICAL, PRESSURE AND TEMPERATURE SENSORS**

Photo conductive cell, photo voltaic, Photo resistive, LDR - Fiber optic sensors - Pressure -Diaphragm, Bellows, Piezoelectric - Tactile sensors, Temperature - IC, Thermistor, RTD, Thermocouple. Acoustic Sensors - flow and level measurement, Radiation Sensors - Smart Sensors - Film sensor, MEMS & Nano Sensors, LASER sensors,

UNIT V SIGNAL CONDITIONING and DAQ SYSTEMS

Amplification - Filtering - Sample and Hold circuits - Data Acquisition: Single channel and multi channel data acquisition – Data logging - applications - Automobile, Aerospace, Home appliances, Manufacturing, Environmental monitoring. TOTAL: 45 PERIODS

OUTCOMES:

The students will be able to

CO1. Expertise in various calibration techniques and signal types for sensors.

CO2. Apply the various sensors in the Automotive and Mechatronics applications

CO3. Study the basic principles of various smart sensors.

CO4. Implement the DAQ systems with different sensors for real time applications

- 1. Ernest O Doebelin, "Measurement Systems Applications and Design", Tata McGraw-Hill, 2009.
- 2. Sawney A K and Puneet Sawney, "A Course in Mechanical Measurements and Instrumentation and Control", 12th edition, Dhanpat Rai & Co, New Delhi, 2013.

REFERENCES

- 1. Patranabis D, "Sensors and Transducers", 2nd Edition, PHI, New Delhi, 2010.
- 2. John Turner and Martyn Hill, "Instrumentation for Engineers and Scientists", Oxford Science Publications, 1999.
- 3. Richard Zurawski, "Industrial Communication Technology Handbook" 2nd edition, CRC Press, 2015.

OIC552	STATE VARIABLE ANALYSIS AND DESIGN	L ⁻ 3	Т 0	P 0	C 3
 OBJECTIVES To provide To study th To study th 	: knowledge on design in state variable form ne design of optimal controller. ne design of optimal estimator including Kalman Filter				
UNIT I Formulation of	STATE FORMULATION state variable model, non-uniqueness, controllability, observability, stabilit	у.	9		
UNIT II Modes, contro	STATE VARIABLE DESIGN Ilability of modes -effect of state and output Feedback- pole placement De	əsig	n		9
UNIT III Need for stat estimation-sep	STATE ESTIMATION e estimation- design of state Observers- full and reduced order – di paration principle	stur	rba	inc	9 ;e
UNIT IV Introduction - Ricatti's equat	OPTIMAL CONTROL Time varying optimal control – LQR steady state optimal control – S ion – Application examples.	Solut	tior	י ר (9 ວf
UNIT V Optimal estim	OPTIMAL ESTIMATION nation – Kalman Bucy Filter-Solution by duality principle-Discrete system	าร-K	alr	ma	9 In
	TOTAL: 45	PEF	RIC	D	S
• Ability to ap	ply advanced control theory to practical engineering problems.				

TEXT BOOKS :

- 1. K. P. Mohandas, "Modern Control Engineering", Sanguine Technical Publishers, 2006.
- 2. G. J. Thaler, "Automatic Control Systems", Jaico Publishing House 1993.
- 3. M.Gopal, Modern Control System Theory, New Age International Publishers, 2002.

REFERENCES:

- 1. William S Levine, "Control System Fundamentals," The Control Handbook, CRC Press, Tayler and Francies Group, 2011.
- 2. Ashish Tewari, 'Modern Control Design with Matlab and Simulink', John Wiley, New Delhi, 2002.

- 3. K. Ogata, 'Modern Control Engineering', 4th Edition, PHI, New Delhi, 2002.
- 4. T. Glad and L. Ljung,, "Control Theory –Multivariable and Non-Linear Methods", Taylor & Francis, 2002.
- 5. D.S.Naidu, "Optimal Control Systems" First Indian Reprint, CRC Press, 2009.

OTL553 TELECOMMUNICATION NETWORK MANAGEMENT L T P C

OBJECTIVES:

- To understand the concept of network management standards.
- To design the common management information service element model.
- To understand the various concept of information modelling.
- To analyze the concept of SNMPv1 and SNMPv2 protocol.
- To analyze the concept of examples of network management.

UNIT I FOUNDATIONS

Network management standards-network management model- organization model- information model abstract syntax notation 1 (ASN.1) – encoding structure- macros-functional model. Network management application functional requirements: Configuration management- fault management-performance management-Error correlation technology- security management- accounting management- common management-report management- polity based management-service level management-management service-community definitions- capturing the requirements- simple and formal approaches-semi formal and formal notations.

UNIT II COMMON MANAGEMENT INFORMATION SERVICE ELEMENT

CMISE model-service definitions-errors-scooping and filtering features- synchronizationfunctional units- association services- common management information protocol specification.

UNIT III INFORMATION MODELING FOR TMN

Rationale for information modeling-management information model-object oriented modeling paradigm- structure of management information-managed object class definition-management information base.

UNIT IV SIMPLE NETWORK MANAGEMENT PROTOCOL

SNMPv1: managed networks–SNMP models– organization model–information model–SNMPv2 communication model–functional model–major changes in SNMPv2–structure of management information, MIB–SNMPv2 protocol– compatibility with SNMPv1– SNMPv3– architecture– applications–MIB security, remote monitoring–SMI and MIB– RMQN1 and RMON2.

UNIT V NETWORK MANAGEMENT EXAMPLES

ATM integrated local management interface–ATM MIB–M1– M2–M3– M4– interfaces–ATM digital exchange interface management–digita1 subscriber loop and asymmetric DSL technologies– ADSL configuration management–performance management Network management tools: Network statistics management–network management system–management platform case studies: OPENVIEW–ALMAP.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course , students would be able to

- Design and analyze of fault management.
- Analyze the common management information protocol specifications.
- Design and analyze of management information model.
- Design the simple network management protocol.
- Design the various types of network management tools.

3003

9

9

9

- 1. Mani Subramanian, "Network Management: Principles and Practice" Pearson Education, Second edition, 2010
- 2. Lakshmi G Raman, "Fundamentals of Telecommunications Network Management", Wiley, 1999

REFERENCES:

- 1. Henry Haojin Wang, "Telecommunication Network Management", Mc- Graw Hill ,1999
- 2. Salah Aidarous & Thomas Plevyak, "Telecommunication Network Management:
- Technologies and Implementations", Wiley, 1997

OIM551 WORLD CLASS MANUFACTURING LTPC

OBJECTIVES

- Understanding of the concept and importance of strategy planning for manufacturing industries
- To apply principles and techniques in the identifiable formulation and implementation of • manufacturing strategy for competitive in global context.

INDUSTRIAL DECLINE AND ASCENDANCY UNIT I

Manufacturing excellence - US Manufacturers - French Manufacturers - Japan decade -American decade - Global decade

BUILDING STRENGTH THROUGH CUSTOMER – FOCUSED PRINCIPLES UNIT II 9

Customer - Focused principles - General principles - Design - Operations - Human resources -Quality and Process improvement - Promotion and Marketing

VALUE AND VALUATION UNIT III

Product Costing - Motivation to improve - Value of the enterprises QUALITY - The Organization : Bulwark of stability and effectiveness - Employee stability – Quality Individuals Vs. Teams - Team stability and cohesiveness - Project cohesiveness and stability

UNIT IV STRATEGIC LINKAGES

Product decisions and customer service - Multi-company planning - Internal manufacturing planning - Soothing the demand turbulence

UNIT V **IMPEDIMENTS**

Bad plant design - Mismanagement of capacity - Production Lines - Assembly Lines - Whole Plant Associates - Facilitators - Teamsmanship - Motivation and reward in the age of continuous Improvement

TOTAL: 45 PERIODS

OUTCOMES:

- Able to understand the concept and the importance of manufacturing strategy for industrial enterprise competitiveness.
- Apply appropriate techniques in the analysis an devaluation of company's opportunities for • enhancing competitiveness in the local regional and global context.
- Identify formulation and implement strategies for manufacturing and therefore enterprise • competitiveness.

TEXT BOOKS:

- 1. By Richard B. Chase, Nicholas J. Aquilano, F. Robert Jacobs "Operations Management for Competitive Advantage", McGraw-Hill Irwin, ISBN 0072323159
- 2. Moore Ran, "Making Common Sense Common Practice: Models for Manufacturing Excellence", Elsevior Multiworth

9

3 0 0 3

9

9

- 3. Narayanan V. K., "Managing Technology & Innovation for Competitive Advantage", Pearson Education Inc.
- 4. Korgaonkar M. G., "Just In Time Manufacturing", MacMillan Publishers India Ltd.,
- 5. Sahay B. S., Saxena K. B. C., Ashish Kumar, "World Class Manufacturing", MacMillan Publishers

OAI751 AGRICULTURAL FINANCE, BANKING AND CO-OPERATION L T P C 3 0 0 3

OBJECTIVES:

- To make the students aware about the agricultural Finance, Banking and Cooperation.
- To acquaint the students with the basic concepts, principles and functions of management.
- To understand the process of finance banking and cooperation.

UNIT I AGRICULTURAL FINANCE - NATURE AND SCOPE

Agricultural Finance: Definition, Importance, Nature and Scope - Agricultural Credit: Meaning, Definition, Need and Classification - Sources of credit - Role of institutional and non - Institutional agencies: Advantages and Disadvantages - Rural indebtedness: consequences of rural indebtedness - History and Development of rural credit in India.

UNIT II FARM FINANCIAL ANALYSIS

Principles of Credit - 5C's, 5R's and & 7P's of Credit - Project Cycle and Management - Preparation of bankable projects / Farm credit proposals - Feasibility - Time value of money: Compounding and Discounting - Appraisal of farm credit proposals - Undiscounted and discounted measures - Repayment plans - Farm Financial Statements: Balance Sheet, Income Statement and Cash Flow statement - Financial Ratio Analysis.

UNIT III FINANCIAL INSTITUTIONS

Institutional Lending Agencies - Commercial banks: Nationalization, Agricultural Development Branches - Area Approach - Priority Sector Lending - Regional Rural Banks, Lead bank, Scale of finance - Higher financial institutions: RBI, NABARD, AFC, ADB, World Bank and Deposit Insurance and Credit Guarantee Corporation of India - Microfinance and its role in poverty alleviation - Self-Help Groups - Non -Governmental Organizations - Rural credit policies followed by State and Central Government - Subsidized farm credit, Differential Interest Rate (DIR), Kisan Credit Card (KCC) Scheme - Relief Measures and Loan Waiver Scheme and Know Your Customer (KYC).

UNIT IV CO-OPERATION

Co-operation: Philosophy and Principles - History of Indian Cooperative Credit Movement: Pre and Post-Independence periods and Cooperation in different plan periods - Cooperative credit institutions: Two tier and three tier structure, Functions: provision of short term and long term credit, Strength and weakness of cooperative credit system, Policies for revitalizing cooperative credit: Salient features of Vaithiyananthan Committee Report on revival of rural cooperative credit institutions, Reorganisation of Cooperative credit structure in Andhra Pradesh and single window system and successful cooperative credit systems in Gujarat, Maharashtra, Punjab etc, - Special cooperatives: LAMPS and FSS: Objectives, role and functions - National Cooperative Development Corporation (NCDC) and National Federation of State Cooperative Banks Ltd., (NAFSCOB) - Objectives and Functions.

UNIT V BANKING AND INSURANCE

Negotiable Instruments: Meaning, Importance and Types - Central Bank: RBI - functions - credit control - objectives and methods: CRR, SLR and Repo rate - Credit rationing - Dear money and cheap money - Financial inclusion and Exclusion: Credit widening and credit deepening monetary policies. Credit gap: Factors influencing credit gap - Non - Banking Financial Institutions (NBFI) -

9

9

9

9

TOTAL: 45 PERIODS

Assessment of crop losses, Determination of compensation - Crop insurance: Schemes. Coverage, Advantages and Limitations in implementation - Estimation of crop yields - Livestock, insurance schemes - Agricultural Insurance Company of India Ltd (AIC): Objectives and functions.

TOTAL: 45 PERIODS

OUTCOME:

After completion of this course, the students will

Be familiar with agricultural finance, Banking, cooperation and basic concepts, principles • and functions of management.

REFERENCES:

- 1. Muniraj, R., 1987, Farm Finance for Development, Oxford & IBH, New Delhi
- 2. Subba Reddy. S and P.Raghu Ram 2011, Agricultural Finance and Management, Oxford & IBH, New Delhi.
- 3. Lee W.F., M.D. Boehlje A.G., Nelson and W.G. Murray, 1998, Agricultural Finance, Kalyani Publishers, New Delhi.
- 4. Mammoria, C.B., and R.D. Saxena 1973, Cooperation in India, Kitab Mahal, Allahabad.

OEE751	BASIC CIRCUIT THEORY	LTPC

OBJECTIVES:

- To introduce electric circuits and its analysis
- To impart knowledge on solving circuit equations using network theorems •
- To introduce the phenomenon of resonance in coupled circuits. •
- To introduce Phasor diagrams and analysis of three phase circuits

UNIT I **BASIC CIRCUITS ANALYSIS**

Resistive elements - Ohm's Law Resistors in series and parallel circuits - Kirchoffs laws - Mesh current and node voltage - methods of analysis.

UNIT II NETWORK REDUCTION AND THEOREMS FOR DC CIRCUITS

Network reduction: voltage and current division, source transformation – star delta conversion. Thevenins and Norton Theorems – Superposition Theorem – Maximum power transfer theorem – Reciprocity Theorem – Millman's theorem.

UNITIII **AC CIRCUITS**

Introduction to AC circuits, inductance reactance, capacitive reactance, Phasor diagrams, real power, reactive power, apparent power, power factor, R-L R-C, RLC networks, Network reduction: voltage and current division, source transformation -mesh and node analysis, Thevenins and Norton Theorems - Superposition Theorem - Maximum power transfer theorem -Reciprocity Theorem – Millman's theorem.

UNIT IV **THREE PHASE CIRCUITS**

A.C. circuits – Average and RMS value - Phasor Diagram – Power, Power Factor and Energy.-Analysis of three phase 3-wire and 4-wire circuits with star and delta connected loads, balanced & un balanced - phasor diagram of voltages and currents - power measurement in three phase circuits.

UNIT V **RESONANCE AND COUPLED CIRCUITS**

Series and parallel resonance - their frequency response - Quality factor and Bandwidth - Self and mutual inductance - Coefficient of coupling - Tuned circuits - Single tuned circuits.

9

9

9

9

9

OUTCOMES:

- Ability to introduce electric circuits and its analysis
- Ability to impart knowledge on solving circuit equations using network theorems
- Ability to introduce the phenomenon of resonance in coupled circuits.
- Ability to introduce Phasor diagrams and analysis of three phase circuits

TEXT BOOKS:

- 1. William H. Hayt Jr, Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuits Analysis", McGraw Hill publishers, edition, New Delhi, 2013.
- 2. Charles K. Alexander, Mathew N.O. Sadiku, "Fundamentals of Electric Circuits", Second Edition, McGraw Hill, 2013.
- 3. Allan H. Robbins, Wilhelm C. Miller, "Circuit Analysis Theory and Practice", Cengage Learning India, 2013.

REFERENCES

- 1. Chakrabarti A, "Circuits Theory (Analysis and synthesis), Dhanpath Rai & Sons, New Delhi, 1999.
- 2. Jegatheesan, R., "Analysis of Electric Circuits," McGraw Hill, 2015.
- 3. Joseph A. Edminister, Mahmood Nahri, "Electric circuits", Schaum's series, McGraw-Hill, New Delhi, 2010.
- 4. M E Van Valkenburg, "Network Analysis", Prentice-Hall of India Pvt Ltd, New Delhi, 2015.
- 5. <u>Mahadevan, K., Chitra, C.</u>, "Electric Circuits Analysis," Prentice-Hall of India Pvt Ltd., New Delhi, 2015.
- 6. Richard C. Dorf and James A. Svoboda, "Introduction to Electric Circuits", 7th Edition, John Wiley & Sons, Inc. 2015.
- 7. Sudhakar A and Shyam Mohan SP, "Circuits and Network Analysis and Synthesis", McGraw Hill, 2015.

OGI751 CLIMATE CHANGE AND ITS IMPACT L T P C

OBJECTIVES:

- To understand the basics of weather and climate
- To have an insight on Atmospheric dynamics and transport of heat
- To develop simple climate models and evaluate climate changes using models

UNIT I BASICS OF WEATHER AND CLIMATE:

Shallow film of Air– stratified & disturbed atmosphere – law – atmosphere Engine. Observation of parameters: Temperature – Humidity – Wind - Pressure – precipitation-surface – networks. Constitution of atmosphere: well stirred atmosphere – process around turbopause – in dry air – ozone – carbon Dioxide – Sulphur Dioxide– Aerosol - water. Evolution of Atmosphere. State of atmosphere: Air temperature – pressure – hydrostatic – Chemistry – Distribution – circulation

UNIT II ATMOSPHERIC DYNAMICS:

Atmosphere dynamics: law – isobaric heating and cooling – adiabatic lapse rates – equation of motion - solving and forecasting. Forces – Relative and absolute acceleration – Earth's rotation coriolis on sphere – full equation of motion – Geostrophy;- Thermal winds –departures – small-scale motion. Radiation, convection and advections: sun & solar radiation – energy balance – terrestrial radiation and the atmosphere – Green house effect- Global warming - Global budget – radiative fluxes - heat transport. Atmosphere and ocean systems convecting & advecting heat. Surface and boundary layer – smaller scale weather system – larger scale weather system.

9

9

3 0 0 3

UNIT III GLOBAL CLIMATE

Components and phenomena in the climate system: Time and space scales – interaction and parameterization problem. Gradients of Radiative forcing and energy transports by atmosphere and ocean – atmospheric circulation – latitude structure of the circulation - latitude – longitude dependence of climate features. Ocean circulation: latitude – longitude dependence of climate features – ocean vertical structure – ocean thermohaline circulation – land surface processes – carbon cycle.

UNIT IV CLIMATE SYSTEM PROCESSES

Conservation of motion: Force – coriolis - pressure gradient- velocity equations – Application – geotropic wind – pressure co-ordinates. Equation of State – atmosphere – ocean. Application: thermal circulation – sea level rise. Temperature equation: Ocean – air – Application – decay of sea surface temperature. Continuity equation: ocean – atmosphere. Application: coastal upwelling – equatorial upwelling – conservation of warm water mass. Moisture and salinity equation: conservation of mass – moisture. Source & sinks – latent heat. Moist processes – saturation – convection – Wave processes in atmosphere and ocean.

UNIT V CLIMATE CHANGE MODELS

Constructing a climate model – climate system modeling – climate simulation and drift – Evaluation of climate model simulation – regional (RCM) – global (GCM) – Global average response to warming – climate change observed to date.

OUTCOMES:

At the end of the course the student will be able to understand

- The concepts of weather and climate
- The principles of Atmospheric dynamics and transport of heat and air mass
- The develop simple climate models and to predict climate change

TEXT BOOKS:

- 1. Fundamentals of weather and climate (2nd Edition) Robin Moilveen (2010), Oxford University Press
- 2. Climate change and climate modeling, J. David Neelin (2011) Cambridge University press.

OCS751

DATA STRUCTURES AND ALGORITHMS

L T P C 3 0 0 3

OBJECTIVES:

- To understand the various algorithm design and analysis techniques
- To learn linear data structures lists, stacks, and queues
- To learn different sorting and searching algorithms
- To understand Tree and Graph data structures

UNIT I ALGORITHM ANALYSIS, LIST ADT

Algorithms: Notation - analysis – running time calculations. Abstract Data Types (ADTs): List ADT – array-based implementation – linked list implementation – singly linked lists- applications of lists: Polynomial Manipulation. Implementation of List ADT using an array and using a linked list in C.

UNIT II STACKS AND QUEUES

Stack ADT - Applications - Evaluating arithmetic expressions- Conversion of Infix to Postfix-Recursion. Queue ADT – Priority Queue - applications of queues. Implementation of Stack ADT and palindrome checking using C. Implementation of Queue operations using arrays in C.

9

9

7

UNIT III SEARCHING AND SORTING ALGORITHMS

Divide and conquer methodology - Searching: Linear Search - Binary Search. Sorting: Insertion sort - Merge sort - Quick sort - Heap sort. Analysis of searching and sorting techniques. Implementation of linear search, binary search, insertion sort, merge sort and quick sort algorithms in C.

UNIT IV TREES

Tree ADT – tree traversals - Binary Tree ADT – expression trees – binary search tree ADT – applications of trees. Heap – applications of heap. Implementation of Binary search tree and its operations, tree traversal methods, finding height of the tree using C. Implementation of heap and heap sorting using arrays in C.

UNIT V GRAPHS

Definition – Representation of Graph – Breadth-first traversal - Depth-first traversal – Dynamic programming Technique – Warshall's and Floyd's algorithm – Greedy method - Dijkstra's algorithm – applications of graphs. Implementation of graph, graph traversal methods, finding shortest path using Dijkstra's algorithm in C

OUTCOMES:

At the end of this course, the students should be able to:

- Implement linear data structures and solve problems using them.
- Implement and apply trees and graphs to solve problems.
- Implement the various searching and sorting algorithms.

TEXT BOOKS:

- 1. Mark Allen Weiss, "Data Structures and Algorithm Analysis in C", 2nd Edition, Pearson Education, 1997.
- 2. Brian W. Kernighan and Dennis M. Ritchie, "The C Programming Language", 2nd Edition, Pearson Education, 1988.

REFERENCES:

- 1. Aho, Hopcroft and Ullman, "Data Structures and Algorithms", Pearson Education, 1983.
- 2. S.Sridhar, "Design and Analysis of Algorithms", First Edition, Oxford University Press. 2014
- 3. Byron Gottfried, Jitender Chhabra, "Programming with C" (Schaum's Outlines Series), Mcgraw Hill Higher Ed., III Edition, 2010
- 4. Yashvant Kanetkar, "Data Structures Through C", BPB publications, II edition, 2003

OML752

ELECTRONIC MATERIALS

OBJECTIVE:

• Understanding the various materials and its properties contribution towards electrical and electronics field. This course covers the properties of materials behind the electronic applications.

UNIT I INTRODUCTION

Structure: atomic structures and bonding, types of bonding, band formation. Defects and imperfections in solids: Point, Line and Planer defects; Interfacial defects and volume defects. Classification of materials based on bonding: conductors, semiconductors and insulators.

UNIT II CONDUCTING MATERIALS

Introduction, factors affecting the conductivity of materials, classification based on conductivity of materials, temperature dependence of resistivity, Low resistivity materials (graphite, AI, Cu and steel) and its applications, high resistivity materials (manganin, constantin, nichrome, tungsten) and their applications. Superconductors: Meissner effect, classification and applications.

TOTAL: 45 PERIODS

L T PC 3 0 0 3

9

7

10

9

UNIT III SEMICONDUCTING AND MAGNETIC MATERIALS

Semiconductors: Introduction, types of semiconductors, temperature dependence of semiconductors, compound semiconductors, basic ideas of amorphous and organic semiconductors. Magnetic Materials: classification of magnetic materials, ferromagnetism-B-H curve (Qualitative), hard and soft magnetic materials, magneto materials applications.

DIELECTRIC AND INSULATING MATERIALS UNIT IV

Dielectric Materials: Introduction, classification, temperature dependence on polarization, properties, dielectric loss, factors influencing dielectric strength and capacitor materials, applications. Insulators: Introduction, thermal and mechanical properties required for insulators, Inorganic materials, organic materials, liquid insulators, gaseous insulators and ageing of insulators, applications,

UNIT V **OPTOELECTRONIC ANDNANO ELECTRONIC MATERIALS**

Optoelectronic materials. Introduction, properties, factor affecting optical properties, role of optoelectronic materials in LEDs, LASERs, photodetectors, solar cells. Nano electronic Materials: Introduction, advantage of nanoelectronic devices, materials, fabrication, challenges in Nano electronic materials.

TOTAL : 45 PERIODS

OUTCOME:

• With the basis, students will be able to have clear concepts on electronic behaviors of materials

TEXT BOOKS:

- 1. S.O. Kasap "Principles of Electronic Materials and Devices", 3rd edition, McGraw-Hill Education (India) Pvt. Ltd., 2007.
- 2. W D Callister, "Materials Science & Engineering An Introduction", Jr., John Willey & Sons, Inc, New York, 7th edition, 2007.

REFERENCES:

- 1. B.G. Streetman and S. Banerjee, Solid State Electronic Devices, 6th edition, PHI Learning, 2009.
- 2. Eugene A. Irene, Electronic Materials Science, Wiley, 2005
- 3. Wei Gao, Zhengwei Li, Nigel Sammes, An Introduction to Electronic Materials for Engineers, 2nd Edition, World Scientific Publishing Co. Pvt. Ltd., 2011

OCE751 ENVIRONMENTAL AND SOCIAL IMPACT ASSESSMENT LTPC 3003

OBJECTIVE:

To impart the knowledge and skills to identify, assess and mitigate the environmental and • social impacts of developmental projects

UNIT I INTRODUCTION

Impacts of Development on Environment - Rio Principles of Sustainable Development-Environmental Impact Assessment (EIA) – Objectives – Historical development – EIA Types – EIA in project cycle –EIA Notification and Legal Framework.

UNIT II **ENVIRONMENTAL ASSESSMENT**

Screening and Scoping in EIA – Drafting of Terms of Reference. Baseline monitoring. Prediction and Assessment of Impact on land, water, air, noise, flora and fauna - Matrices - Networks -Checklist Methods - Mathematical models for Impact prediction.

q

9

10

9
UNIT III **ENVIRONMENTAL MANAGEMENT PLAN**

Plan for mitigation of adverse impact on water, air and land, water, energy, flora and fauna -Environmental Monitoring Plan - EIA Report Preparation - Public Hearing-Environmental Clearance

UNIT IV SOCIO ECONOMIC ASSESSMENT

Baseline monitoring of Socio economic environment - Identification of Project Affected Personal -Rehabilitation and Resettlement Plan- Economic valuation of Environmental impacts - Cost benefit Analysis-

UNIT V CASE STUDIES

EIA case studies pertaining to Infrastructure Projects - Roads and Bridges - Mass Rapid Transport Systems - Airports - Dams and Irrigation projects - Power plants. **TOTAL: 45 PERIODS**

OUTCOMES:

The students completing the course will have ability to

- carry out scoping and screening of developmental projects for environmental and social assessments
- explain different methodologies for environmental impact prediction and assessment •
- plan environmental impact assessments and environmental management plans
- evaluate environmental impact assessment reports •

TEXT BOOKS:

- 1. Canter, R.L, "Environmental impact Assessment ", 2nd Edition, McGraw Hill Inc, New Delhi.1995.
- 2. Lohani, B., J.W. Evans, H. Ludwig, R.R. Everitt, Richard A. Carpenter, and S.L. Tu, "Environmental Impact Assessment for Developing Countries in Asia", Volume 1 – Overview, Asian Development Bank, 1997.
- 3. Peter Morris, Riki Therivel "Methods of Environmental Impact Assessment", Routledge Publishers,2009.

REFERENCES:

- 1. Becker H. A., Frank Vanclay,"The International handbook of social impact assessment" conceptual and methodological advances, Edward Elgar Publishing, 2003.
- 2. Barry Sadler and Mary McCabe, "Environmental Impact Assessment Training Resource Manual". United Nations Environment Programme.2002.
- 3. Judith Petts, "Handbook of Environmental Impact Assessment Vol. I and II", Blackwell Science New York, 1998.
- 4. Ministry of Environment and Forests EIA Notification and Sectoral Guides, Government of India, New Delhi, 2010.

OAE751

FUNDAMENTALS OF COMBUSTION

OBJECTIVE:

To make the student understand the fundamentals of combustion and to teach them combustion in different regions like basic flame to gas turbine engines to rocket engines and finally how it is done in supersonic speeds.

UNIT I INTRODUCTION TO COMBUSTION

Thermo-chemical equations -Heat of formation -Activation energy -Multi-step reactions - Heat of reaction -first order, second order and third order reactions - Calculation of adiabatic flame temperature

9

9

9

LTPC 3003

UNIT II BASICS OF CHEMICAL KINETICS AND FLAMES

Premixed flames –Diffusion flames –measurement of burning velocity – various methods –Effect of various parameters on burning velocity – flame stability –Deflagration – Detonation – Rankine-Hugoniot curve –Radiation by flames.

UNIT III COMBUSTION IN GAS TURBINE ENGINES

Combustion in gas turbine combustion chambers -Recirculation – combustion efficiency, Factors affecting combustion efficiency-Fuels used for gas turbine combustion chambers – combustion stability –Flame holder types.

UNIT IV COMBUSTION IN ROCKETS

Solid propellant grain types – types of solid propellant burning in rocket combustion chambers – basic mechanism of composite propellant combustion – solid propellant burn rate laws – criterion for stable combustion - combustion in liquid rocket engines – single fuel droplet combustion model – combustion in hybrid rockets.

UNIT V SUPERSONIC COMBUSTION (Qualitative Treatment only) 9

Introduction – supersonic combustion controlled by diffusion, mixing and heat convection – Analysis of reactions and mixing processes - supersonic burning with detonation shocks .

TOTAL: 45 PERIODS

OUTCOMES:

- The student will be in a position to understand the detailed mechanism of Aerospace Vehicles and Aircraft Engines.
- The student will be able to analyse and impart the combustion processes that occur in Aircraft Engines and Rocket Vehicles.

TEXT BOOK:

1. Sharma, S.P., and Chandra Mohan, "Fuels and Combustion", Tata Mc. Graw Hill Publishing Co., Ltd., New Delhi, 1987.

REFERENCES:

- 1. Beer, J.M., and Chiierar, N.A. "Combustion Aerodynamics", Applied Science Publishers Ltd., London, 1981.
- 2. Chowdhury, R., Applied Engineering Thermodynamics, Khanna Publishers, New Delhi, 1986.
- 3. Loh, W.H.T., "Jet, Rocket, Nuclear, Ion and Electric Propulsion: Theory and Design, Springer Verlag, New York, 1982.
- 4. Mathur, M.L. and Sharma, R.P., "Gas Turbine, Jet and Rocket Propulsion", Standard Publishers & Distributors, Delhi, 2nd edition 2014.
- 5. Sutton, G.P., Rocket Propulsion Elements, John Wiley, 1993.

OGI752 FUNDAMENTALS OF PLANETARY REMOTE SENSING L T P C 3 0 0 3

OBJECTIVES:

- To provide an insight to the basics of planetary Remote Sensing
- To demonstrate how the Remote Sensing technique is applied to explore the surface characteristics of the planets and its environ.

UNIT I PLANETARY SCIENCE

History and inventory of solar system – planet-definition –properties – Formation of solar system. Planetary Atmospheres: composition - thermal structure – clouds – meteorology – photo chemistry – Eddy Diffusion. Surfaces and Interiors: Mineralogy and Petrology – Planetary interiors – surface morphology. Terrestrial planets and the Moon: The moon & Mercury – surface – Atmosphere – Interior – Magnetic Field.

9

9

UNIT II SATELLITE ORBIT

Equation of 2 body motion: Energy, orbits and energy - Circular Orbits-EOS Terra-Geosynchronous satellite orbit- orbital elements. Launching Satellites and space probes -Retrograde orbits-Inter planetary Transfer - Hohmann Transfer - Gravity Assist-Cassini-Messenger. Breaking into orbit or landing- Retro Rockets-Aerobraking- Parachutes- Impact.

PROPERTIES OF EMR UNIT III

Definition of Remote Sensing - Electro Magnetic Radiation: Electromagnetic Spectrum-Development of EM theory – White Light – Excited hydrogen gas – Quantum physics – Definition. EM Radiation: Properties – Radiant energy – Sun's luminosity calculation. Other Energy: Black body radiation – Plank curve of black body. Properties of EMR: Kinetic energy – Polarization, laws of Max Plank. Wien's and Stephen Boltzmann

UNIT IV RADIOMETRY AND SCATTEROMETRY

Radiometry – Radar Altimetry – Effect of surface roughness – Altimetry derived data – Reflectivity - Radiometry and Derived emissivity - Incorporation of data set into image analysis - Introduction to SAR - convolution - bidirectional reflectance distribution - Microwave scatterometry - side looking RADAR, SAR – Interferometry.

UNITV PLANETARY APPLICATION

Planetary Imaging Spectroscopy- USGS Tetracoder and Expert system - Mars Global Surveyor Mission (MGS) – Digital Elevation Model(DEM) of Mars – Mars Orbiter Camera (MOC) – Stereo and photoclinometric techniques for DEM.

TOTAL: 45 PERIODS

OUTCOMES:

On completion of the course, the students have

- Exposure to fundamentals of planetary science or orbital mechanics •
- The principles of observing the planets
- Knowledge of Remote Sensing methods for determining surface elevation and mapping of • planets.

REFERENCES:

- 1. Fundamental Planetary Science : Physics, Chemistry and Habitability, Jack J. Lissauer, Imke de Pater (2013) Cambridge University Press
- 2. Physical principles of Remote Sensing, Rees, W.G. (2013) 3rd Edn, Cambridge University Press
- 3. Radar Remote Sensing of Planetary Surfaces, Bruce A Campbell (2011) Cambridge University Press
- 4. Remote Sensing Application for Planetary Surfaces, Kumar Deepak (2014) Lambert Publication.

OEN751

GREEN BUILDING DESIGN

LTPC 3 0 0 3

UNIT I ENVIRONMENTAL IMPLICATIONS OF BUILDINGS

Energy use, carbon emissions, water use, waste disposal; Building materials: sources, methods of production and environmental Implications. Embodied Energy in Building Materials: Transportation Energy for Building Materials; Maintenance Energy for Buildings.

UNIT II IMPLICATIONS OF BUILDING TECHNOLOGIES EMBODIED ENERGY OF BUILDINGS

Framed Construction, Masonry Construction. Resources for Building Materials, Alternative concepts. Recycling of Industrial and Buildings Wastes. Biomass Resources for buildings.

9

9

9

9

9

COMFORTS IN BUILDING

Thermal Comfort in Buildings- Issues; Heat Transfer Characteristic of Building Materials and Building Techniques. Incidence of Solar Heat on Buildings-Implications of Geographical Locations.

UTILITY OF SOLAR ENERGY IN BUILDINGS UNIT IV

Utility of Solar energy in buildings concepts of Solar Passive Cooling and Heating of Buildings. Low Energy Cooling. Case studies of Solar Passive Cooled and Heated Buildings.

GREEN COMPOSITES FOR BUILDINGS UNIT V

Concepts of Green Composites. Water Utilisation in Buildings, Low Energy Approaches to Water Management. Management of Solid Wastes. Management of Sullage Water and Sewage. Urban Environment and Green Buildings. Green Cover and Built Environment.

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. K.S.Jagadish, B. U. Venkataramareddy and K. S. Nanjundarao. Alternative Building Materials and Technologies. New Age International, 2007.
- 2. Low Energy Cooling For Sustainable Buildings. John Wiley and Sons Ltd, 2009.
- 3. Sustainable Building Design Manual. Vol 1 and 2, Teri, New Delhi, 2004.

REFERENCES:

- 1. Osman Attmann Green Architecture Advanced Technologies and Materials. McGraw Hill, 2010.
- 2. Jerry Yudelson Green building Through Integrated Design. McGraw Hill, 2009.
- 3. Fundamentals of Integrated Design for Sustainable Building By Marian Keeler, Bill Burke

OAI752 INTEGRATED WATER RESOURCES MANAGEMENT LTPC

OBJECTIVE:

l

- To introduce the students to the interdisciplinary analysis of water and conceptual design of • intervention strategies.
- To develop a knowledge-base on capacity building on IWRM. •

UNIT I IWRM FRAMEWORK

Definition - Objectives - Principles - Evolution of IWRM - IWRM relevance in water resources management - Paradigm shift : Processes and prospective outcomes

UNIT II **CONTEXTUALIZING IWRM**

UN formulations - SDG goals - IWRM in Global, Regional and Local water partnership -Institutional transformation - Bureaucratic reforms - Inclusive development

UNIT III **EMERGING ISSUES IN WATER MANAGEMENT**

Emerging Issues -- Drinking water management in the context of climate change - IWRM and irrigation - Flood - Drought - Pollution - Linkages between water, health and poverty

IWRM AND WATER RESOURCES DEVELOPMENT IN INDIA UNIT IV

Rural Development - Ecological sustainability- -Watershed development and conservation -Ecosystem regeneration – Wastewater reuse - Sustainable livelihood - Food security

UNIT V ASPECTS OF INTEGRATED DEVELOPMENT

Capacity building - Conceptual framework of IWRM – Problems and policy issues - Solutions for effective integrated water management - Case studies

TOTAL: 45 PERIODS

The students will be able to

OUTCOMES:

UNIT III

3003

9

9

9

9

9

9

9

- Understand objectives, principles and evolution of integrated water resources management.
- Have an idea of contextualizing IWRM
- Gain knowledge in emerging issues in water management, flood, drought, pollution and poverty.
- Understand the water resources development in India and wastewater reuse.
- Gain knowledge on integrated development of water management.

TEXTBOOKS:

- 1. Mollinga P. *et al.* "Integrated Water Resources Management", Water in South Asia Volume I, Sage Publications, 2006.
- 2. Sithamparanathan, Rangasamy, A., and Arunachalam, N., "Ecosystem Principles and Sustainable Agriculture", Scitech Publications (India) Pvt.Lt, Chennai, 1999.

REFERENCES:

- 1. Cech Thomas V., Principles of Water Resources: History, Development, Management and Policy. John Wiley and Sons Inc., New York. 2003.
- 2. Murthy, J.V.S., "Watershed Management in India", Wiley Eastern Ltd., New York, 1995.
- 3. Dalte, S.J.C., "Soil Conservation and Land Management", International Book Distribution, India, 1986.

OEI751 INTRODUCTION TO EMBEDDED SYSTEMS

LT P C 3 0 0 3

OBJECTIVES:

- To introduce the Building Blocks of Embedded System
- To Educate in Various Embedded Development Strategies
- To Introduce Bus Communication in processors, Input/output interfacing.
- To impart knowledge in Various processor scheduling algorithms.
- To introduce Basics of Real time operating system and example tutorials to discuss on one real-time operating system tool

UNIT I INTRODUCTION TO EMBEDDED SYSTEMS

Introduction to Embedded Systems – The build process for embedded systems- Structural units in Embedded processor, selection of processor & memory devices- DMA – Memory management methods- Timer and Counting devices, Watchdog Timer, Real Time Clock, In circuit emulator, Target Hardware Debugging.

UNIT II EMBEDDED NETWORKING

Embedded Networking: Introduction, I/O Device Ports & Buses– Serial Bus communication protocols -RS232 standard – RS422 – RS485 - CAN Bus -Serial Peripheral Interface (SPI) – Inter Integrated Circuits (I²C) –need for device drivers.

UNIT III EMBEDDED FIRMWARE DEVELOPMENT ENVIRONMENT

Embedded Product Development Life Cycle- objectives, different phases of EDLC, Modelling of EDLC; issues in Hardware-software Co-design, Data Flow Graph, state machine model, Sequential Program Model, concurrent Model, object oriented Model.

UNIT IV RTOS BASED EMBEDDED SYSTEM DESIGN

Introduction to basic concepts of RTOS- Task, process & threads, interrupt routines in RTOS, Multiprocessing and Multitasking, Preemptive and non-preemptive scheduling, Task communication-shared memory, message passing-, Inter process Communication – synchronization between processes-semaphores, Mailbox, pipes, priority inversion, priority inheritance, comparison of Real time Operating systems: Vx Works, C/OS-II, RT Linux.

9

9

9

UNIT V EMBEDDED SYSTEM APPLICATION DEVELOPMENT

Case Study of Washing Machine- Automotive Application- Smart card System Application,.

TOTAL: 45 PERIODS

OUTCOMES:

• Ability to understand and analyse, linear and digital electronic circuits.

TEXT BOOKS:

- 1. Rajkamal, 'Embedded System-Architecture, Programming, Design', Mc Graw Hill, 2013.
- 2. Peckol, "Embedded system Design", John Wiley & Sons, 2010
- 3. Lyla B Das," Embedded Systems-An Integrated Approach", Pearson, 2013

REFERENCES:

- 1. Shibu. K.V, "Introduction to Embedded Systems", Tata Mcgraw Hill, 2009.
- 2. Elicia White," Making Embedded Systems", O' Reilly Series, SPD, 2011.
- 3. Tammy Noergaard, "Embedded Systems Architecture", Elsevier, 2006.
- 4. Han-Way Huang, "Embedded system Design Using C8051", Cengage Learning, 2009.
- 5. Rajib Mall "Real-Time systems Theory and Practice" Pearson Education, 2007.

OMF751

LEAN SIX SIGMA

L T P C 3 0 0 3

OBJECTIVE:

• To gain insights about the importance of lean manufacturing and six sigma practices.

UNIT I LEAN & SIX SIGMA BACKGROUND AND FUNDAMENTALS

Historical Overview – Definition of quality – What is six sigma -TQM and Six sigma - lean manufacturing and six sigma- six sigma and process tolerance – Six sigma and cultural changes – six sigma capability – six sigma need assessments - implications of quality levels, Cost of Poor Quality (COPQ), Cost of Doing Nothing – assessment questions

UNIT II THE SCOPE OF TOOLS AND TECHNIQUES

Tools for definition – IPO diagram, SIPOC diagram, Flow diagram, CTQ Tree, Project Charter – Tools for measurement – Check sheets, Histograms, Run Charts, Scatter Diagrams, Cause and effect diagram, Pareto charts, Control charts, Flow process charts, Process Capability Measurement, Tools for analysis – Process Mapping, Regression analysis, RU/CS analysis, SWOT, PESTLE, Five Whys, interrelationship diagram, overall equipment effectiveness, TRIZ innovative problem solving – Tools for improvement – Affinity diagram, Normal group technique, SMED, 5S, mistake proofing, Value stream Mapping, forced field analysis – Tools for control – Gantt chart, Activity network diagram, Radar chart, PDCA cycle, Milestone tracker diagram, Earned value management.

UNIT III SIX SIGMA METHODOLOGIES

Design For Six Sigma (DFSS), Design For Six Sigma Method - Failure Mode Effect Analysis (FMEA), FMEA process - Risk Priority Number (RPN)- Six Sigma and Leadership, committed leadership – Change Acceleration Process (CAP)- Developing communication plan – Stakeholder

UNIT IV SIX SIGMA IMPLEMENTATION AND CHALLENGES

Tools for implementation – Supplier Input Process Output Customer (SIPOC) – Quality Function Deployment or House of Quality (QFD) – alternative approach –implementation – leadership training, close communication system, project selection – project management and team – champion training – customer quality index – challenges – program failure, CPQ vs six sigma, structure the deployment of six sigma – cultural challenge – customer/internal metrics

9 an

9

9

UNIT V EVALUATION AND CONTINUOUS IMPROVEMENT METHODS

Evaluation strategy – the economics of six sigma quality, Return on six Sigma (ROSS), ROI, poor project estimates – continuous improvement – lean manufacturing – value, customer focus, Perfection, focus on waste, overproduction – waiting, inventory in process (IIP), processing waste, transportation, motion, making defective products, underutilizing people – Kaizen – 5S

TOTAL: 45 PERIODS

OUTCOME:

• The student would be able to relate the tools and techniques of lean sigma to increase productivity

REFERENCES:

- 1. Michael L.George, David Rownalds, Bill Kastle, What is Lean Six Sigma, McGraw Hill 2003
- 2. Thomas Pyzdek, The Six Sigma Handbook, McGraw-Hill, 2000
- 3. Fred Soleimannejed, Six Sigma, Basic Steps and Implementation, AuthorHouse, 2004
- Forrest W. Breyfogle, III, James M. Cupello, Becki Meadows, Managing Six Sigma: A Practical Guide to Understanding, Assessing, and Implementing the Strategy That Yields Bottom-Line Success, John Wiley & Sons, 2000
- 5. James P. Womack, Daniel T.Jones, Lean Thinking, Free Press Business, 2003

OAN751

LOW COST AUTOMATION

L T P C 3 0 0 3

Q

9

9

OBJECTIVES

- To give basic knowledge about automation
- To understand the basic hydraulics and pneumatics systems for automation
- To understand the assembly automation

UNIT I AUTOMATION OF ASSEMBLY LINES

Concept of automation - mechanization and automation - Concept of automation in industry - mechanization and automation - classification, balancing of assembly line using available algorithms - Transfer line-monitoring system (TLMS) using Line Status - Line efficiency - Buffer stock Simulation in assembly line

UNIT II AUTOMATION USING HYDRAULIC SYSTEMS

Design aspects of various elements of hydraulic systems such as pumps, valves, filters, reservoirs, accumulators, actuators, intensifiers etc. - Selection of hydraulic fluid, practical case studied on hydraulic circuit design and performance analysis - Servo valves, electro hydraulic valves, proportional valves and their applications.

UNIT III AUTOMATION USING PNEUMATIC SYSTEMS

Pneumatic fundamentals - control elements, position and pressure sensing -logic circuits - switching circuits - fringe conditions modules and these integration - sequential circuits - cascade methods - mapping methods – step counter method - compound circuit design - combination circuit design. Pneumatic equipments - selection of components - design calculations -application - fault finding – hydro pneumatic circuits - use of microprocessors for sequencing - PLC, Low cost automation - Robotic circuits.

UNIT IV AUTOMATION USING ELECTRONIC SYSTEMS

Introduction - various sensors – transducers - signal processing - servo systems - programming of microprocessors using 8085 instruction - programmable logic controllers

9

UNIT V **ASSEMBLY AUTOMATION**

Types and configurations - Parts delivery at workstations - Various vibratory and non vibratory devices for feeding - hopper feeders, rotary disc feeder, centrifugal and orientation - Product design for automated assembly.

OUTCOMES:

- Upon completion of this course, the students can able to do low cost automation systems
- Students can do some assembly automation

TEXT BOOKS:

- Anthony Esposito, "Fluid Power with applications", Prentice Hall international, 2009.
- Mikell P Groover, "Automation, Production System and Computer Integrated •
- Manufacturing", Prentice Hall Publications, 2007. •

REFERENCES

- 1. Kuo .B.C, "Automatic control systems", Prentice Hall India, New Delhi, 2007.
- 2. Peter Rohner, "Industrial hydraulic control", Wiley Edition, 1995.
- 3. Mujumdar.S.R, "Pneumatic System", Tata McGraw Hill 2006.

OMT751	MEMS AND NEMS	L	т	Р	С
		3	0	0	3

OBJECTIVE:

To develop the basic knowledge about the MEMS system and to know about the concepts and principles of MEMS & NEMS with various applications.

UNIT I INTRODUCTION

Fundamentals - Micro systems and microelectronics - working principle of microsystems - Micro sensors, acoustic sensor, Bio sensor, chemical sensor, pressure sensor, Temperature sensor micro actuation techniques - Actuation using thermal forces, actuation using SMA, Actuation using piezo electric effect, Actuation using electro static forces – micro gripper – micro motors – micro valves - micro pumps, types - micro heat pipes.

MICRO FABRICATION AND MANUFACTURING TECHNIQUES UNIT II

Materials for micro systems - Substrates and wafer- Silicon, Quartz, Piezoelectric crystals, polymers - Photo Lithography - Diffusion- Oxidation - CVD- PVD, Etching, types - Bulk micro manufacturing - Surface micro machining - Micro system packaging-materials, die level, device level, system level - Packaging techniques - die preparation - Surface bonding-wire bonding sealing.

UNIT III **MECHANICS FOR MICRO SYSTEM DESIGN AND APPLICATIONS**

Basic concepts – Bending of thin plates – Mechanical vibration – Thermo mechanics - Fracture mechanics – Fluid mechanics at micro systems- Design considerations - Process design-mask layout design – Mechanical design-Applications of micro system in automotive industry, bio medical, aerospace and telecommunications.

UNIT IV NANO ELECTRONICS

Basics of nano electronics – Nano electronics with tunneling devices – Nano electronics with super conducting devices - Molecular nano technology - Applications of MNT - Direct self-assemblydevice assembly - Electrostatic self-assembly-nano tubes - Nano wire and carbon-60 -Dielectrophoretic nano assembly.

9

9

9

UNIT V ARCHITECTURE AND APPLICATIONS

Architecture of MEMS - Requirements of nano systems - Development of nano electronics and structuring - Application of NEMS - Deposition of coatings - Three dimensional materials -Dewatering.

TOTAL :45PERIODS

9

OUTCOMES:

- **CO1:** Understand the Fundamentals and working principles of microsystems and microelectronics
- **CO2:** Knowledge on both micro fabrication and manufacturing techniques
- **CO3:** Acquiring knowledge about micro system design and its various applications
- **CO4:** Study about the basic concepts of Nano electronics with various devices and also discusses with its applications
- CO5: Realizing the various application of NEMS and Architecture of MEMS

TEXT BOOKS:

- 1. Goser.K , Dienstuhl .J , " Nano Electronics & Nanosystems " , Springer International Edition, 2008.
- 2. Michael Pycraft Inrushes, "Nano Electro Mechanics in Engineering & biology", CRC press New York, 2002.
- Tai Ran Hsu."MEMS & Microsystems: Design and Manufacture ". second edition Tata Mc Graw Hill. 2008.

REFERENCES

- 1. Charles P.Poojlejr Fran K J.Owners , "Introduction to Nano Technology ", Willey student Edition 2008.
- 2. Gregory Timp, "Nano Technology", Spinger International Edition, 1999.
- 3. Julian W.Gardner, Vijay K.Varadan, Osama O.Awadel Karim, Microsensors MEMS and Smart Devices, John Wiby & sons Ltd., 2001.
- 4. Mohamed Gad el- Hak, The MEMS HAND book, CRC press 2005

ORO751

NANO COMPUTING

OBJECTIVES:

The student should be made to:

- Learn nano computing challenges
- Be familiar with the imperfections
- Be exposed to reliability evaluation strategies •
- Learn nano scale quantum computing •
- Understand Molecular Computing and Optimal Computing •

NANOCOMPUTING-PROSPECTS AND CHALLENGES UNIT I

Introduction - History of Computing - Nanocomputing - Quantum Computers - Nanocomputing Technologies - Nano Information Processing - Prospects and Challenges - Physics of Nanocomputing: Digital Signals and Gates - Silicon Nanoelectronics - Carbon Nanotube Electronics - Carbon Nanotube Field-effect Transistors – Nanolithography.

UNIT II NANOCOMPUTING WITH IMPERFECTIONS

Introduction - Nanocomputing in the Presence of Defects and Faults - Defect Tolerance - Towards Quadrillion Transistor Logic Systems.

RELIABILITY OF NANOCOMPUTING UNIT III

Markov Random Fields - Reliability Evaluation Strategies - NANOLAB - NANOPRISM - Reliable Manufacturing and Behavior from Law of Large Numbers.

LTPC 3003

9

9

UNIT IV NANOSCALE QUANTUM COMPUTING

Quantum Computers - Hardware Challenges to Large Quantum Computers - Fabrication, Test, and Architectural Challenges - Quantum-dot Cellular Automata (QCA) - Computing with QCA - QCA Clocking - QCA Design Rules.

UNIT V QCADESIGNER SOFTWARE AND QCA IMPLEMENTATION

Basic QCA Circuits using QCA Designer - QCA Implementation - Molecular and Optical Computing: Molecular Computing - Optimal Computing - Ultrafast Pulse Shaping and Tb/sec Data Speeds.

OUTCOMES:

Upon completion of the course, the student should be able to:

- Discuss nano computing challenges.
- Handle the imperfections.
- Apply reliability evaluation strategies.
- Use nano scale quantum computing.
- Utilize Molecular Computing and Optimal Computing.

TEXT BOOK:

1. Sahni V. and Goswami D., Nano Computing, McGraw Hill Education Asia Ltd. (2008), ISBN (13): 978007024892.

REFERENCES:

- 1. Sandeep K. Shukla and R. Iris Bahar., Nano, Quantum and Molecular Computing, Kluwer Academic Publishers 2004, ISBN: 1402080670.
- 2. Sahni V, Quantum Computing, McGraw Hill Education Asia Ltd. 2007.
- 3. Jean-Baptiste Waldner, Nanocomputers and Swarm Intelligence, John Wiley & Sons, Inc. 2008, ISBN (13): 978-1848210097.

OAE752 PRINCIPLES OF FLIGHT MECHANICS

OBJECTIVE:

• To make the student understand the performance of airplanes under various flight conditions like take off, cruise, landing, climbing, gliding, turning and other maneuvers.

UNIT I GENERAL CONCEPTS

International Standard atmosphere, IAS, EAS, TAS, Propeller theory- Froude momentum and blade element theories, Propeller co-efficients, Use of propeller charts, Performance of fixed and variable pitch propellers, High lift devices, Thrust augmentation

UNIT II DRAG OF BODIES

Streamlined and bluff body, Types of drag, Effect of Reynold's number on skin friction and pressure drag, Drag reduction of airplanes, Drag polar, Effect of Mach number on drag polar. Concept of sweep- effect of sweep on drag.

UNIT III STEADY LEVEL FLIGHT

General equation of motion of an airplane. Steady level flight, Thrust required and Power required, Thrust available and Power available for propeller driven and jet powered aircraft, Effect of altitude, maximum level flight speed, conditions for minimum drag and minimum power required, Effect of drag divergence on maximum velocity, Range and Endurance of Propeller and Jet aircrafts. Effect of wind on range and endurance.

9

8

9

LTPC

3003

UNIT IV GLIDING AND CLIMBING FLIGHT

Shallow and steep angles of climb, Rate of climb, Climb hodograph, Maximum Climb angle and Maximum Rate of climb- Effect of design parameters for propeller jet and glider aircrafts, Absolute and service ceiling, Cruise climb, Gliding flight, Glide hodograph

UNIT V ACCELERATED FLIGHT

Estimation of take-off and landing distances, Methods of reducing landing distance, level turn, minimum turn radius, maximum turn rate, bank angle and load factor, Constraints on load factor, SST and MSTR. Pull up and pull down maneuvers, V-n diagram.

TOTAL: 45 PERIODS

OUTCOMES: Students will be able to

- Understand concepts of take-off, climb, cruise, turn, descent and landing performance.
- understand the performance characteristics of the different types of power plants
- Understand and predict the behavior of fixed wing aircraft undertaking a typical flight profile
- Understand the factors that influence aircraft design and limit aircraft performance.

TEXT BOOKS:

- 1. Anderson, Jr., J.D. Aircraft Performance and Design, McGraw-Hill International Edition, 1999
- 2. Houghton, E.L. and Carruthers, N.B. Aerodynamics for engineering students, Edward Arnold Publishers, 1988.

REFERENCES:

- 1. Anderson, J.D., Introduction to Flight, McGraw-Hill; 8th edition , 2015
- 2. Clancy, L J., Aerodynamics, Shroff publishers (2006)
- 3. John J Bertin., Aerodynamics for Engineers, Prentice Hall; 6th edition, 2013.
- 4. Kuethe, A.M. and Chow, C.Y., Foundations of Aerodynamics, John Wiley & Sons; 5th Edition, 1997.

OCH751 PROCESS MODELING AND SIMULATION LTPC

OBJECTIVE:

• To give an overview of various methods of process modeling, different computational techniques for simulation.

UNIT I INTRODUCTION

Introduction to modeling and simulation, classification of mathematical models, conservation equations and auxiliary relations.

UNIT II STEADY STATE LUMPED SYSTEMS

Degree of freedom analysis, single and network of process units, systems yielding linear and nonlinear algebraic equations, flow sheeting – sequential modular and equation oriented approach, tearing, partitioning and precedence ordering, solution of linear and non-linear algebraic equations.

UNIT III UNSTEADY STATE LUMPED SYSTEMS

Analysis of liquid level tank, gravity flow tank, jacketed stirred tank heater, reactors, flash and distillation column, solution of ODE initial value problems, matrix differential equations, simulation of closed loop systems.

UNIT IV STEADY STATE DISTRIBUTED SYSTEM

Analysis of compressible flow, heat exchanger, packed columns, plug flow reactor, solution of ODE boundary value problems.

9

9

9

3003

9

UNIT V UNSTEADY STATE DISTRIBUTED SYSTEM & OTHER MODELLING APPROACHES

13

Analysis laminar flow in pipe, sedimentation, boundary layer flow, conduction, heat exchanger, heat transfer in packed bed, diffusion, packed bed adsorption, plug flow reactor. Empirical modeling, parameter estimation, population balance and stochastic modeling.

TOTAL : 45 PERIODS

• Upon completing the course, the student should have understood the development of process models based on conservation principles and process data and computational techniques to solve the process models.

TEXT BOOKS:

OUTCOME:

- 1. Ramirez, W.; " Computational Methods in Process Simulation ", 2nd Edn., Butterworths Publishers, New York, 2000.
- Luyben, W.L., "Process Modelling Simulation and Control ",2nd Edn, McGraw-Hill Book Co., 1990

REFERENCES:

- 1. Felder, R. M. and Rousseau, R. W., " Elementary Principles of Chemical Processes ", John Wiley, 2000.
- 2. Franks, R. G. E., "Mathematical Modelling in Chemical Engineering", John Wiley, 1967.
- 3. Amiya K. Jana,"Process Simulation and Control Using ASPEN", 2nd Edn,PHI Learning Ltd (2012).
- 4. Amiya K. Jana, "Chemical Process Modelling and Computer Simulation" 2nd Edn, PHI Learning Ltd,(2012).

OAT751 PRODUCTION OF AUTOMOTIVE COMPONENTS L T P C

OBJECTIVES:

- To study in detail about the modern casting, forging, molding and machining processes followed in automotive components.
- To enhance the knowledge of the students in the field of non-ferrous materials, emerging metallic and non-metallic materials like polymers, fiber reinforced plastics (FRP), engineering ceramics, metal matrix composites (MMCs) and its manufacturing methods, selection criteria, properties and applications for automotive components.

UNIT I ENGINE COMPONENTS

Overview -Material selection and Manufacturing methods for the Engine Components. Engine block– Casting– Conventional and expendable pattern. Cylinder head– Casting, machining and thermal barrier coating. Crank shaft, connecting rod, camshaft–Forging, machining and heat treatment. Piston Gravity, squeeze, die casting, machining and finishing. Gudgeon Pin -Machining and Finishing, Valve forging, friction welding, machining, thermal barrier coating, heat treatment and surface improvement. Cylinder Liners, Piston ring -Centrifugal, HPDC, LPDC, machining and finishing. Castings Processes for Oil pan and Carburettors. Push Rods, Rocker Arm , Tappets, Spark Plug- Forging, Machining, Finishing and Heat treatment.

UNIT II TRANSMISSION COMPONENTS

Overview - Material selection and Manufacturing methods for transmission system. Flywheel - *Casting* and Machining. Clutch - Friction plate, clutch housing, pressure plate conventional and fine blanking, composite friction lining. Methods of Gear manufacture – Gear hobbing and gear Shaping machines - gear generation - gear finishing and shaving – Grinding and lapping of hobs and shaping cutters –gear honing –gear broaching. Gearbox -Casting, precision forging, powder metallurgy, heat treatment and finishing. Propeller shaft -Continuous casting, extrusion, dies heat treatment and surface hardening. Axle-Differential –Axle Shaft –Bearing –fasteners-Forging,

9

casting and machining. Leaf and coil spring -Forging and machining, composite leaf spring and wrap forming of coil spring.

UNIT III BODY COMPONENTS

Surface treatment –Plastics – Plastics in Automobile vehicles –Processing of plastics - Body Panel -Thermoforming and hydro forming, press forming, stretch forming. Emission control system –catalytic converter –Hydro forming of exhaust manifold and lamp housing. Welding – Resistance welding and other welding processes with the use of Robots in Body weldment. Instrument Panel -Principle of injection molding, injection molding of instrument panel. Bumpers -Molding of bumpers, reinforced reaction injection molding, Manufacture of polymer panels.

UNIT IV CHASSIS COMPONENTS

Material selection and manufacturing methods for Vehicle Frame Manufacturing, Wheel drum, Brake drum, Brake shoes, wheel rim and wheel housing manufacturing. Steering systems, shock absorbers, dead axle – casting, forging, machining and finishing operation- Heat treatment procedures for chassis components.

UNIT V TYRES AND ADVANCED MATERIALS MANUFACTURING

Tire and tube manufacturing, spray painting, powder coating, Prototype Manufacturing -RPT,3-D Printing, chemical vapour deposition, physical vapour deposition, cryogenic grinding of powders, sealants, sound proof materials, structural adhesives, MMC liners – Selection of materials for Auto components.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of this course the student should

- Will be able to select an appropriate manufacturing process for particular Automotive Components.
- Have in-depth knowledge of various engineering materials used in automobile engineering and the corresponding manufacturing processes for the same.

TEXT BOOKS:

- 1. Heldt P M, "High Speed Combustion Engines", Oxford IBH publishing Co., Calcutta, 1996.
- 2. Kalpakjian, "Manufacturing Engineering and Technology", Pearson Education, 2005.

REFERENCES:

- 1. B.P. Bhardwaj, "The Complete Book on Production of Automobile Components & Allied Products", NIIR Project Consultancy Services, 2014.
- 2. Degarmo E P, "Materials and process in Manufacturing", Macmillan Publishing Co, 1997.
- 3. John A S, "Introduction to Manufacturing Processes", Tata McGraw -Hill, 2012.
- 4. Kalpakjian, "Manufacturing Processes For Engineering Materials", Pearson Education, 2009.
- 5. Philip F O and JairoMunuz, "Manufacturing Processes and Systems", John Wiley & Sons, New York, 1998.

OIE751

ROBOTICS

L T P C 3 0 0 3

OBJECTIVES:

- To understand the functions of the basic components of a Robot.
- To study the use of various types of End of Effectors and Sensors
- To impart knowledge in Robot Kinematics and Programming
- To learn Robot safety issues and economics.

9

9

UNIT I FUNDAMENTALS OF ROBOT

Robot - Definition - Robot Anatomy - Co ordinate Systems, Work Envelope Types and Classification- Specifications-Pitch, Yaw, Roll, Joint Notations, Speed of Motion, Pay Load-Robot Parts and their Functions-Need for Robots-Different Applications.

UNIT II ROBOT DRIVE SYSTEMS AND END EFFECTORS

Pneumatic Drives-Hydraulic Drives-Mechanical Drives-Electrical Drives-D.C. Servo Motors, Stepper Motors, A.C. Servo Motors-Salient Features, Applications and Comparison of all these Drives, End Effectors-Grippers-Mechanical Grippers, Pneumatic and Hydraulic- Grippers, Magnetic Grippers,

Vacuum Grippers; Two Fingered and Three Fingered Grippers; Internal Grippers and External Grippers; Selection and Design Considerations.

UNIT III SENSORS AND MACHINE VISION

Requirements of a sensor, Principles and Applications of the following types of sensors- Position sensors - Piezo Electric Sensor, LVDT, Resolvers, Optical Encoders, pneumatic Position Sensors, Range Sensors Triangulations Principles, Structured, Lighting Approach, Time of Flight, Range Finders, Laser Range Meters, Touch Sensors, Joinary Sensors, Analog Sensors, Wrist Sensors, Compliance Sensors, Slip Sensors, Camera, Frame Grabber, Sensing and Digitizing Image Data- Signal Conversion, Image Storage, Lighting Techniques, Image Processing and Analysis-Data Reduction, Segmentation, Feature Extraction, Object Recognition, Other Algorithms, Applications- Inspection, Identification, Visual Serving and Navigation.

UNIT IV ROBOT KINEMATICS AND ROBOT PROGRAMMING

Forward Kinematics, Inverse Kinematics and Difference; Forward Kinematics and Reverse Kinematics of manipulators with Two, Three Degrees of Freedom (in 2 Dimension), Four Degrees of freedom (in 3 Dimension) Jacobians, Velocity and Forces-Manipulator Dynamics, Trajectory Generator, Manipulator Mechanism Design-Derivations and problems. Lead through Programming, Robot programming Languages-VAL Programming-Motion Commands, Sensor Commands, End Effector commands and simple Programs.

UNIT V IMPLEMENTATION AND ROBOT ECONOMICS

RGV, AGV; Implementation of Robots in Industries-Various Steps; Safety Considerations for Robot Operations - Economic Analysis of Robots.

OUTCOME:

• Upon completion of this course, the students can able to apply the basic engineering knowledge for the design of robotics

TEXT BOOKS:

- 1. Klafter R.D., Chmielewski T.A and Negin M., "Robotic Engineering An Integrated Approach", Prentice Hall, 2003.
- 2. Groover M.P., "Industrial Robotics -Technology Programming and Applications", McGraw Hill, 2001.

REFERENCES:

- 1. Craig J.J., "Introduction to Robotics Mechanics and Control", Pearson Education, 2008.
- 2. Deb S.R., "Robotics Technology and Flexible Automation" Tata McGraw Hill Book Co., 1994.
- 3. Koren Y., "Robotics for Engineers", Mc Graw Hill Book Co., 1992.
- 4. Fu.K.S.,Gonzalz R.C. and Lee C.S.G., "Robotics Control, Sensing, Vision and Intelligence", McGraw Hill Book Co., 1987.
- 5. Janakiraman P.A., "Robotics and Image Processing", Tata McGraw Hill, 1995.
- 6. Rajput R.K., "Robotics and Industrial Automation", S.Chand and Company, 2008.
- 7. Surender Kumar, "Industrial Robots and Computer Integrated Manufacturing", Oxford and IBH Publishing Co. Pvt. Ltd., 1991.

9

12

5

TOTAL: 45 PERIODS

OML753

OBJECTIVES:

The subject exposes students to the basics parameter for selection of materials and different classes of materials, manufacturing processes and their properties, applications of materials.

ENGINEERING MATERIALS UNIT I

Introduction - classification of engineering materials - selection of materials for engineering purposes -selection of materials and shape -classification metal and alloys, polymers, ceramics and glasses, composites, natural materials,-non metallic materials- smart materials - physical, metrical properties of metals

UNIT II **MATERIAL PROPERTIES**

Mechanical properties - fatigue strength - fracture Toughness - Thermal Properties - Magnetic Properties - Fabrication Properties -- electrical, optical properties - Environmental Properties, Corrosion properties -- shape and size - Material Cost and Availability-- failure analysis

UNIT III MANUFACTURING PROCESSING AND ECONOMIC ANALYSIS

Interaction of Materials Selection, Design, and Manufacturing Processes - Production Processes and Equipment for Metals - Metal Forming, Shaping, and Casting - Plastic Parts Processing -Composites Fabrication Processes - Advanced Ceramics Processing - surface treatment -Resource -The Price and Availability of Materials

MATERIALS SELECTION CHARTS AND TESTING UNIT IV

Ashby material selection charts-Testing of Metallic Materials - Plastics Testing - Characterization and Identification of Plastics - Professional and Testing Organizations - Ceramics Testing -Nondestructive Inspection.

UNIT V **APPLICATIONS AND USES**

Selection of Materials for Biomedical Applications - Medical Products - Materials in Electronic Packaging - Advanced Materials in Sports Equipment - Materials Selection for Wear Resistance -Advanced Materials in Telecommunications - Using Composites - Manufacture and Assembly with Plastics, fiber and Diamond Films. **TOTAL: 45 PERIODS**

OUTCOMES:

- Understand different types of availability materials •
- Easy and effective way to select required materials •
- Ability to identify the material properties •

TEXT BOOKS:

- 1. Ashby, M. F. Materials selection in mechanical design, 3rd edition. Elsevier, 2005.
- 2. Ashby, M. F. and Johnson, K. Materials and design the art and science of material selection in product design. Elsevier, 2002.

REFERENCES:

- 1. Charles, J. A., Crane, F. A. A. and Furness, J. A. G. Selection and use of engineering materials, 3rd edition. Butterworth-Heinemann, 1997
- 2. Handbook of Materials Selection. Edited by Myer Kutz2002 John Wiley & Sons, Inc., NewYork.

9

9

9

9

9

9

9

OBJECTIVE:

To understand the various destructive and non destructive testing methods of materials and its industrial applications.

UNIT I INTRODUCTION TO MATERIALS TESTING

Overview of materials, Classification of material testing, Purpose of testing, Selection of material, Development of testing, Testing organizations and its committee, Testing standards, Result Analysis, Advantages of testing.

UNIT II **MECHANICAL TESTING**

Introduction to mechanical testing, Hardness test (Vickers, Brinell, Rockwell), Tensile test, Impact test (Izod, Charpy) - Principles, Techniques, Methods, Advantages and Limitations, Applications. Bend test, Shear test, Creep and Fatigue test - Principles, Techniques, Methods, Advantages and Limitations, Applications.

NON DESTRUCTIVE TESTING UNIT III

Visual inspection, Liquid penetrant test, Magnetic particle test, Thermography test – Principles, Techniques, Advantages and Limitations, Applications. Radiographic test, Eddy current test, Ultrasonic test, Acoustic emission- Principles, Techniques, Methods, Advantages and Limitations, Applications.

UNIT IV MATERIAL CHARACTERIZATION TESTING

Macroscopic and Microscopic observations, Optical and Electron microscopy (SEM and TEM) -Principles, Types, Advantages and Limitations, Applications. Diffraction techniques, Spectroscopic Techniques, Electrical and Magnetic Techniques- Principles, Types, Advantages and Limitations, Applications.

UNIT V **OTHER TESTING**

Thermal Testing: Differential scanning calorimetry, Differential thermal analysis. Thermomechanical and Dynamic mechanical analysis: Principles, Advantages, Applications. Chemical Testing: X-Ray Fluorescence, Elemental Analysis by Inductively Coupled Plasma-Optical Emission Spectroscopy and Plasma-Mass Spectrometry.

OUTCOMES:

- Identify suitable testing technique to inspect industrial component •
- Ability to use the different technique and know its applications and limitations •

TEXT BOOKS:

- 1. Baldev Raj, T.Jayakumar, M.Thavasimuthu "Practical Non-Destructive Testing", Narosa Publishing House, 2009.
- 2. Cullity, B. D., "Elements of X-ray diffraction", 3rd Edition, Addison-Wesley Company Inc., New York, 2000.
- 3. P. Field Foster, "The Mechanical Testing of Metals and Alloys" 7th Edition, Cousens Press, 2007.

REFERENCES:

- 1. Metals Handbook: Mechanical testing, (Volume 8) ASM Handbook Committee, 9th Edition, American Society for Metals, 1978.
- 2. ASM Metals Handbook, "Non-Destructive Evaluation and Quality Control", American Society of Metals, Metals Park, Ohio, USA.
- 3. Brandon D.G., "Modern Techniques in Metallography", Von Nostrand Inc. NJ, USA, 1986.

9

9

TOTAL: 45 PERIODS

VEHICLE STYLING AND DESIGN

UNIT I **INTRODUCTION TO VEHICLE DESIGN:**

Timeline developments in design - Mass production - Streamlining for style and low drag -Commercial vehicles - Engine developments - Transmission system development - Steering -Suspension – Brakes - Interior refinement - Safety design.

VEHICLE BODY DESIGN: UNIT II

The styling process - Working environment and structure - Product planning - Concept sketching and package related sketching - Full sized tape drawing - Clay modelling.

Aerodynamics - Aerodynamic forces - Drag & Drag reduction - Stability during cross-winds - Wind Noise - Under-hood ventilation - Cabin ventilation - Introduction to Computational fluid dynamics -Wind tunnel testing of scale models.

NOISE AND VIBRATION: UNIT III

Vibration – fundamentals & control – Acoustics – fundamentals - Human response to sound -Sound measurement - Automotive noise criteria - Drive-by noise tests, Noise from stationary vehicles. Interior noise in vehicles. Automotive noise sources and control techniques - Engine noise, Transmission noise, Intake & exhaust noise, Aerodynamic noise, Tyre noise, Brake noise

CRASHWORTHINESS AND ERGONOMIC APPROACH: UNIT IV

Accident and injury analysis - Vehicle impacts: general dynamics & crush characteristics -Structural collapse and its influence upon safety - Occupant accommodation - Ergonomics in the automotive industry - Ergonomics methods and tools - Case studies of Fiat Punto - Strategies for improving occupant accommodation and comfort.

UNIT V **VEHICLE CONTROL SYSTEMS**

Automotive application of sensors - Chassis control systems - Anti-lock braking systems, Traction control systems, Electronically controlled power-assisted steering - Vehicle safety and security systems - Air-bag and seat belt pre-tensioner systems, Remote keyless entry and vehicle immobilization, Introduction to On-board navigation systems.

TOTAL: 45 PERIODS

TEXT BOOK:

OAT752

1. An Introduction to Modern Vehicle Design, Julian Happian-Smith, Butterworth-Heinemann Ltd (2002)

REFERENCES:

- 1. Aerodynamics of Road Vehicles: From Fluid Mechanics to Vehicle Engineering, Wolf-Heinrich Hucho (Eds.), Butterworth-Heinemann Ltd (1987)
- 2. Sensors and Transducers, Ian R Sinclair, Butterworth Heinemann Ltd (2001)
- 3. The Motor Vehicle T.K. Garrett, K. Newton & W. Steeds, Butterworth- Heinemann Ltd (2001)

OTT751

WEAVING MECHANISMS

OBJECTIVE:

To enable the students to understand the preparation for weaving and various functions of weaving machine.

UNIT I INTRODUCTION

Types of winding drums - Design of winder drums; various motions for automatic weavingprimary, secondary and auxiliary motions; Driving plain power loom; timing of motions.

9

9

9

9

9

LTPC 3003

UNIT II SHEDDING

Principles of tappet, dobby and jacquard shedding mechanisms, positive and negative shedding mechanisms, electronic dobby and jacquard mechanism, tappet design.

UNIT III PICKING-I

Mechanism of picking in shuttle looms, components of picking system, design of shuttle, multi shuttle mechanism.

UNIT IV PICKING-II

Principles of weft insertions in shuttle less looms; weft feeder, mechanism of weft insertion by projectile, gripper cycle; rapier loom-classification, rapier drive mechanisms, devices timings; Water jet weft insertion; Air jet weft insertion.

UNIT V OTHER MECHANISMS

Shuttle and shuttleless terry mechanisms; Let-off and take-up mechanism; selvedge mechanism in shuttless loom, warp weft, stop motions, warp protector mechanism **TOTAL: 45 PERIODS**

OUTCOMES:

On completion of this course, the students shall,

- Understand the concepts of preparation of weaving process
- Understand different motions of loom in fabric formation.

TEXT BOOKS:

- 1. Talukdar. M.K., Sriramulu. P.K., and Ajgaonkar. D.B., "Weaving: Machines, Mechanisms, Management", Mahajan Publishers, Ahmedabad, 1998, ISBN: 81-85401-16-0.
- 2. Booth. J.E., "Textile Mathematics Volume 3", The Textile Institute, Manchester, 1977, ISBN:090073924X.
- 3. Marks R., and Robinson. T.C., "Principles of Weaving", The Textile Institute, Manchester, 1989, ISBN: 0 900739 258.

REFERENCES:

- 1. SabitAdanur., "Handbook of Weaving", Technomic Publishing Co. Inc., 2001, ISBN: 1587160137 | ISBN-13: 9781587160134
- 2. Vangheluwe L., "Air- Jet Weft Insertion", Textile progress, Vol. 29, No. 4, Textile InstitutePublication, 1999, ISBN; 1870372255.
- Valeriy V. Choogin., PalithaBandara., and Elena V. Chepelyuk., "Mechanisms of Flat WeavingTechnology", Wood Head Publishing, 2013, ISBN: 0857097806 | ISBN-13: 9780857097804
- 4. Prabir Kumar Banerjee., "Principles of Fabric Formation" CRC Press, 2014, ISBN: 1466554444 | ISBN-13: 9781466554443
- 5. Majumdar A., Das A., Alagirusamy R.,and Kothari V.K., "Process Control in Textile Manufacturing", wood Head publishing, 2012, ISBN: 0857090275 | ISBN-13: 9780857090270
- 6. "Weaving: The knowledge in Technology", Papers Presented at the Textile Institute WeavingConference 1998, Textile Institute, ISBN: 1870372182 ISBN-13: 9781870372183.

OMV751

MARINE VEHICLES

L T P C 3 0 0 3

OBJECTIVES:

- To provide the students a basic knowledge about various types of marine vehicles
- To provide the students basic theory behind the design and development of marine vehicles

9

9

9

UNIT I MARINE VEHICLES

Types – general – by function – commercial marine vehicles- passenger ship, cargo ships, oil and chemical tankers, cattle carriers, harbor crafts, off shore platform, container ships

UNIT II REEFERS AND GAS CARRIERS

Introduction – Types , design considerations, safety – operation and controls, precaution during bunkering

UNIT III REMOTELY OPERABLE VEHICLE (ROV), UMS SHIPS

Remotely Operable Vehicles (ROV) – The ROV business – Design theory and standards – control and simulation – design and stability – components of ROV – applications, UMS operation, and controls

UNIT IV SUBMERSIBLES AND AUTONOMOUS UNDERWATER VEHICLE 9 (AUV)

submersibles types – applications, AUV – Design and construction considerations – components – sensors – Navigation -control strategies – applications

UNIT V MANNED AND UN MANNED SUBMERSIBLE

Introduction – Design and operational consideration – pressure hull exo-structure – ballasting and trim – maneuvering and control – Life support and habitability – emergency devices and equipment's – certification and classification, towed vehicles – gliders – crawler – Design and construction

TOTAL: 45 PERIODS

OUTCOMES:

- Students will be able understand the types of marine vehicles
- Students should get a preliminary knowledge in marine vehicle design, construction and its components

TEXT BOOKS:

- 1 Jonathan M. Ross, human factors for naval marine vehicle design and operation
- 2 Sabiha A. Wadoo, Pushkin Kachroo, Autonomous underwater vehicles, modelling, control design and Simulation, CRC press, 2011
- 3 R. Frank Busby, Manned Submersibles, Office of the oceanographer of the Navy, 1976

REFERENCES

- 1 Ferial L hawry, The ocean engineering handbook, CRC press,2000
- 2 Richard A Geyer, "Submersibles and their use in oceanography and ocean engineering", Elsevier, 1997
- 3 Robert D. Christ, Robert L. Wernli, Sr. "The ROV Manual A User Guide for Remotely Operated Vehicles", Elsevier, second edition, 2014

6

9

9